Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069026

RESUMO

Colorectal cancer (CRC) is one of the most common and deadly cancers in the world. However, no effective treatment for the disease has yet been found. For this reason, several studies are being carried out on the treatment of CRC. Currently, there is limited understanding of the role of CPNE7 (copine-7) in CRC progression and metastasis. The results of this study show that CPNE7 exerts an oncogenic effect in CRC. First, CPNE7 was shown to be significantly up-regulated in CRC patient tissues and CRC cell lines compared to normal tissues according to IHC staining, qRT-PCR, and western blotting. Next, this study used both systems of siRNA and shRNA to suppress CPNE7 gene expression to check the CPNE7 mechanism in CRC. The suppressed CPNE7 significantly inhibited the growth of CRC cells in in vitro experiments, including migration, invasion, and semisolid agar colony-forming assay. Moreover, the modified expression of CPNE7 led to a decrease in the levels of genes associated with epithelial-mesenchymal transition (EMT). The epithelial genes E-cadherin (CDH1) and Collagen A1 were upregulated, and the levels of mesenchymal genes such as N-cadherin (CDH2), ZEB1, ZEB2, and SNAIL (SNAL1) were downregulated after CPNE7 inhibition. This study suggests that CPNE7 may serve as a potential diagnostic biomarker for CRC patients.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , RNA Interferente Pequeno/genética
2.
Curr Issues Mol Biol ; 44(1): 288-300, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35723400

RESUMO

The aim of the study was to develop a new diagnostic biomarker for identifying serum exosomal miRNAs specific to epithelial ovarian cancer (EOC) and to find out target gene of the miRNA for exploring the molecular mechanisms in EOC. A total of 84 cases of ovarian masses and sera were enrolled, comprising EOC (n = 71), benign ovarian neoplasms (n = 13). We detected expression of candidate miRNAs in the serum and tissue of both benign ovarian neoplasm group and EOC group using real-time polymerase chain reaction. Immunohistochemistry were constructed using formalin fixed paraffin embedded (FFPE) tissue to detect expression level of suppressor of cytokine signaling 4 (SOCS4). In the EOC group, miRNA-1290 was significantly overexpressed in serum exosomes and tissues as compared to benign ovarian neoplasm group (fold change ≥ 2, p < 0.05). We observed area under the receiver operating characteristic curve (AUC) for miR-1290, using a cut-off of 0.73, the exosomal miR-1290 from serum had AUC, sensitivity, and specificity values of 0.794, 69.2 and 87.3, respectively. In immunohistochemical study, expression of SOCS4 in EOC was lower than that in benign ovarian neoplasm. Serum exosomal miR-1290 could be considered as a biomarker for differential diagnosis of EOC from benign ovarian neoplasm and SOCS4 might be potential target gene of miR-1290 in EOC.

3.
Cancers (Basel) ; 12(3)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182954

RESUMO

In this study, we have determined the anticancer activity of doxorubicin (Dox)-loaded DNA/gold nanoparticle (AuNP) nanocarrier (Dox-DNA-AuNP) for the treatment of ovarian cancer. The anticancer effect of Dox-DNA-AuNP was evaluated in vitro using the EZ-Cytox cell viability assay on three human ovarian cancer cell lines, SK-OV-3, HEY A8, and A2780. Dox-DNA-AuNP exhibited outstanding activity with good IC50 values of 4.8, 7.4, and 7.6 nM for SK-OV-3, HEY A8, and A2780, respectively. In vivo evaluation further demonstrated the superior anticancer effects of Dox-DNA-AuNP by inhibiting tumor growth compared to free Dox in an established SK-OV-3 xenograft mice model. Dox-DNA-AuNP showed about a 2.5 times higher tumor growth inhibition rate than free Dox. Furthermore, the immunohistochemical analysis of Ki67 antigen expression showed the lowest number of proliferative cells in the ovarian tumor tissue treated with Dox-DNA-AuNP. These results suggest Dox-DNA-AuNP might be a potential effective agent in ovarian cancer chemotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA