Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 571, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978426

RESUMO

BACKGROUND: Astragalus grows mainly in drought areas. Cycloastragenol (CAG) is a tetracyclic triterpenoid allelochemical extracted from traditional Chinese medicine Astragalus root. Phospholipase C (PLC) and Gα-submit of the heterotrimeric G-protein (GPA1) are involved in many biotic or abiotic stresses. Nitric oxide (NO) is a crucial gas signal molecule in plants. RESULTS: In this study, using the seedlings of Arabidopsis thaliana (A. thaliana), the results showed that low concentrations of CAG induced stomatal closure, and high concentrations inhibited stomatal closure. 30 µmol·L-1 CAG significantly increased the relative expression levels of PLC1 and GPA1 and the activities of PLC and GTP hydrolysis. The stomatal aperture of plc1, gpa1, and plc1/gpa1 was higher than that of WT under CAG treatment. CAG increased the fluorescence intensity of NO in guard cells. Exogenous application of c-PTIO to WT significantly induced stomatal aperture under CAG treatment. CAG significantly increased the relative expression levels of NIA1 and NOA1. Mutants of noa1, nia1, and nia2 showed that NO production was mainly from NOA1 and NIA1 by CAG treatment. The fluorescence intensity of NO in guard cells of plc1, gpa1, and plc1/gpa1 was lower than WT, indicating that PLC1 and GPA1 were involved in the NO production in guard cells. There was no significant difference in the gene expression of PLC1 in WT, nia1, and noa1 under CAG treatment. The gene expression levels of NIA1 and NOA1 in plc1, gpa1, and plc1/gpa1 were significantly lower than WT, indicating that PLC1 and GPA1 were positively regulating NO production by regulating the expression of NIA1 and NOA1 under CAG treatment. CONCLUSIONS: These results suggested that the NO accumulation was essential to induce stomatal closure under CAG treatment, and GPA1 and PLC1 acted upstream of NO.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Estômatos de Plantas/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo
2.
J Plant Physiol ; 282: 153929, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724592

RESUMO

Cycloastragenol (CAG) is a tetra-cyclic triterpenoid allelochemical. It has been widely studied in animals but rarely in plants. Here, we reported that a model allelochemical CAG inhibited primary root elongation of Arabidopsis by reducing the sizes of both the meristem and elongation zones. Phospholipase Dδ(PLDδ), hydrogen peroxide (H2O2), and auxin affected this process. After treatment with CAG, the expression of PLDδ and the activity of the Phospholipase D(PLD) enzyme increased in WT. Mutants analysis demonstrated that PLDδ negatively regulated the primary root elongation by CAG treatment. CAG treatment stimulated the accumulation of H2O2 in roots. The production of H2O2 was derived from cell wall peroxidase. Mutants analysis showed that PLDδ positively regulated the production of H2O2 by CAG treatment. CAG also decreased auxin content in the root tip by affecting the expression of auxin synthesis-related genes. PLDδ was involved in the auxin reduction mediated by CAG, but H2O2 did not participate in this process. In conclusion, PLDδ, auxin, and H2O2 mediated the inhibition of primary root growth by CAG in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfolipase D , Arabidopsis/genética , Fosfolipase D/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Funct Plant Biol ; 48(10): 1005-1016, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34167638

RESUMO

Oridonin is an important diterpenoid, which plays an important role in plant growth and development. PLDα1 and GPA1 are involved in many biotic or abiotic stresses. In this study, using the seedlings of Arabidopsis thaliana L. wild type (WT), PLDα1 defective mutant (pldα1), GPA1 defective mutant (gpa1) and pldα1/gpa1 double mutant as materials, the effect of stomatal apertures responding to Oridonin and the functions of PLDα1 and GPA1 in this response were investigated. The results showed that 60 µmol·L-1 of Oridonin induced stomatal closure and significantly increased the relative expression levels of GPA1 and PLDα1. Oridonin increased H2O2 accumulation in guard cells by inhibiting the antioxidant enzymes. The increase of H2O2 caused the expression of OST1, which is a positive regulatory gene for stomatal closure. Both PLDα1 and GPA1 were involved in Oridonin-induced stomatal closure and PLDα1 acted downstream of GPA1. The results suggested that Oridonin caused stomatal closure by affecting GPA1 and promoting PLDα1 to produce PA, and further accumulating H2O2 to upregulate gene OST1.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Fosfolipase D/fisiologia , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Diterpenos do Tipo Caurano , Peróxido de Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...