Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1421012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979414

RESUMO

Objective: This study revealed a core regulator and common upstream mechanisms for the multifaceted pathological processes of age-related macular degeneration (AMD) and provided proof-of-concept for this new therapeutic target. Methods: Comprehensive gene expression analysis was performed using RNA sequencing of eye cup from old mice as well as laser-induced choroidal neovascularization (CNV) mouse model. Through integrative analysis and protein-protein interaction (PPI) analysis, common pathways and key transcription factor was identified simultaneously engaged in age-related retinal degeneration and CNV, the two typical pathological process of AMD. Subsequently, the expression changes of Spi1, the key regulator, as well as the alternation of the downstream mechanisms were validated in both models through qRT-PCR, Elisa, flow cytometry and immunofluorescence. Further, we assessed the impact of Spi1 knockdown in vitro and in vivo using gene intervention vectors carried by adeno-associated virus or lentivirus to test its potential as a therapeutic target. Results: Compared to corresponding controls, we found 1,939 and 1,319 genes differentially expressed in eye cups of old and CNV mice respectively. The integrative analysis identified a total of 275 overlapping DEGs, of which 150 genes were co-upregulated. PPI analysis verified a central transcription factor, SPI1. The significant upregulation of Spi1 expression was then validated in both models, accompanied by macrophage polarization towards the M1 phenotype. Finally, SPI1 suppression significantly inhibited M1 polarization of BMDMs and attenuated neovascularization in CNV mice. Conclusion: This study demonstrates that SPI1 exerts a pivotal role in AMD by regulation of macrophage polarization and innate immune response, offering promise as an innovative target for treating AMD.


Assuntos
Neovascularização de Coroide , Modelos Animais de Doenças , Macrófagos , Degeneração Macular , Transativadores , Animais , Degeneração Macular/imunologia , Degeneração Macular/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Neovascularização de Coroide/imunologia , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Camundongos Endogâmicos C57BL , Ativação de Macrófagos/genética , Humanos , Perfilação da Expressão Gênica , Masculino
2.
Theranostics ; 14(9): 3509-3525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948065

RESUMO

Rationale: Current treatments for ocular angiogenesis primarily focus on blocking the activity of vascular endothelial growth factor (VEGF), but unfavorable side effects and unsatisfactory efficacy remain issues. The identification of novel targets for anti-angiogenic treatment is still needed. Methods: We investigated the role of tsRNA-1599 in ocular angiogenesis using endothelial cells, a streptozotocin (STZ)-induced diabetic model, a laser-induced choroidal neovascularization model, and an oxygen-induced retinopathy model. CCK-8 assays, EdU assays, transwell assays, and matrigel assays were performed to assess the role of tsRNA-1599 in endothelial cells. Retinal digestion assays, Isolectin B4 (IB4) staining, and choroidal sprouting assays were conducted to evaluate the role of tsRNA-1599 in ocular angiogenesis. Transcriptomic analysis, metabolic analysis, RNA pull-down assays, and mass spectrometry were utilized to elucidate the mechanism underlying angiogenic effects mediated by tsRNA-1599. Results: tsRNA-1599 expression was up-regulated in experimental ocular angiogenesis models and endothelial cells in response to angiogenic stress. Silencing of tsRNA-1599 suppressed angiogenic effects in endothelial cells in vitro and inhibited pathological ocular angiogenesis in vivo. Mechanistically, tsRNA-1599 exhibited little effect on VEGF signaling but could cause reduced glycolysis and NAD+/NADH production in endothelial cells by regulating the expression of HK2 gene through interacting with YBX1, thus affecting endothelial effects. Conclusions: Targeting glycolytic reprogramming of endothelial cells by a tRNA-derived small RNA represents an exploitable therapeutic approach for ocular neovascular diseases.


Assuntos
Neovascularização de Coroide , Células Endoteliais , Glicólise , Animais , Glicólise/efeitos dos fármacos , Camundongos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Humanos , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Inibidores da Angiogênese/farmacologia , Hexoquinase/metabolismo , Hexoquinase/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Células Endoteliais da Veia Umbilical Humana , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
3.
J Transl Med ; 22(1): 484, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773604

RESUMO

BACKGROUND: The aim of this study was to conduct an in silico analysis of a novel compound heterozygous variant in breast cancer susceptibility gene 2 (BRCA2) to clarify its structure-function relationship and elucidate the molecular mechanisms underlying triple-negative breast cancer (TNBC). METHODS: A tumor biopsy sample was obtained from a 42-year-old Chinese woman during surgery, and a maxBRCA™ test was conducted using the patient's whole blood. We obtained an experimentally determined 3D structure (1mje.pdb) of the BRCA2 protein from the Protein Data Bank (PDB) as a relatively reliable reference. Subsequently, the wild-type and mutant structures were predicted using SWISS-MODEL and AlphaFold, and the accuracy of these predictions was assessed through the SAVES online server. Furthermore, we utilized a high ambiguity-driven protein-protein docking (HADDOCK) algorithm and protein-ligand interaction profiler (PLIP) to predict the pathogenicity of the mutations and elucidate pathogenic mechanisms that potentially underlies TNBC. RESULTS: Histological examination revealed that the tumor biopsy sample exhibited classical pathological characteristics of TNBC. Furthermore, the maxBRCA™ test revealed two compound heterozygous BRCA2 gene mutations (c.7670 C > T.pA2557V and c.8356G > A.pA2786T). Through performing in silico structural analyses and constructing of 3D models of the mutants, we established that the mutant amino acids valine and threonine were located in the helical domain and oligonucleotide binding 1 (OB1), regions that interact with DSS1. CONCLUSION: Our analysis revealed that substituting valine and threonine in the helical domain region alters the structure and function of BRCA2 proteins. This mutation potentially affects the binding of proteins and DNA fragments and disrupts interactions between the helical domain region and OB1 with DSS1, potentially leading to the development of TNBC. Our findings suggest that the identified compound heterozygous mutation contributes to the clinical presentation of TNBC, providing new insights into the pathogenesis of TNBC and the influence of compound heterozygous mutations in BRCA2.


Assuntos
Proteína BRCA2 , Simulação por Computador , Mutação , Humanos , Feminino , Adulto , Mutação/genética , Proteína BRCA2/genética , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Genes BRCA2 , Sequência de Bases
4.
Biomed Opt Express ; 15(4): 2708-2718, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633062

RESUMO

The two-photon all-optical physiology system has attracted great interest in deciphering neuronal circuits in vivo, benefiting from its advantages in recording and modulating neuronal activities at single neuron resolutions. However, the interference, or crosstalk, between the imaging and photostimulation beams introduces a significant challenge and may impede the future application of voltage indicators in two-photon all-optical physiology system. Here, we propose the time multiplexed excitation method to distinguish signals from neuronal activities and crosstalks from photostimulation. In our system, the laser pulses of the imaging beam and photostimulation beam are synchronized, and a time delay is introduced into these pulses to separate the fluorescence signal generated by these two beams. We demonstrate the efficacy of our system in eliminating crosstalk signals from photostimulation and evaluate its influence on both genetically encoded calcium indicators (GECIs) and genetically encoded voltage indicators (GEVIs) through in vivo experiments.

5.
Exp Eye Res ; 242: 109877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537669

RESUMO

Choroidal neovascularization (CNV) is a hallmark of neovascular age-related macular degeneration (nAMD) and a major contributor to vision loss in nAMD cases. However, the identification of specific cell types associated with nAMD remains challenging. Herein, we performed single-cell sequencing to comprehensively explore the cellular diversity and understand the foundational components of the retinal pigment epithelium (RPE)/choroid complex. We unveiled 10 distinct cell types within the RPE/choroid complex. Notably, we observed significant heterogeneity within endothelial cells (ECs), fibroblasts, and macrophages, underscoring the intricate nature of the cellular composition in the RPE/choroid complex. Within the EC category, four distinct clusters were identified and EC cluster 0 was tightly associated with choroidal neovascularization. We identified five clusters of fibroblasts actively involved in the pathogenesis of nAMD, influencing fibrotic responses, angiogenic effects, and photoreceptor function. Additionally, three clusters of macrophages were identified, suggesting their potential roles in regulating the progression of nAMD through immunomodulation and inflammation regulation. Through CellChat analysis, we constructed a complex cell-cell communication network, revealing the role of EC clusters in interacting with fibroblasts and macrophages in the context of nAMD. These interactions were found to govern angiogenic effects, fibrotic responses, and inflammatory processes. In summary, this study reveals noteworthy cellular heterogeneity in the RPE/choroid complex and provides valuable insights into the pathogenesis of CNV. These findings will open up potential avenues for deep understanding and targeted therapeutic interventions in nAMD.


Assuntos
Corioide , Neovascularização de Coroide , Modelos Animais de Doenças , Macrófagos , Epitélio Pigmentado da Retina , Análise de Célula Única , Animais , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/genética , Corioide/patologia , Corioide/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Transcriptoma , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Comunicação Celular/fisiologia , Degeneração Macular Exsudativa/genética , Degeneração Macular Exsudativa/metabolismo , Perfilação da Expressão Gênica
6.
Inflamm Res ; 73(4): 541-562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345635

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is an increasingly prevalent global health concern that has garnered substantial attention. However, the underlying mechanisms are still unclear and the current treatments have significant limitations. Intestinal organoids provide an in vitro model to explore the pathogenesis, test the therapeutic effects, and develop regenerative treatments as well as offer the potential to transform drug discovery of IBD. METHODS: To advance our understanding of the whole story of IBD spanning from the pathogenesis to the current therapeutic strategies and latest advancements, a comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original articles and reviews related to IBD, organoids, pathogenesis and therapy. RESULTS: This review deciphers the etiopathogenesis and the current therapeutic approaches in the treatment of IBD. Notably, critical aspects of intestinal organoids in IBD, such as their potential applications, viability, cell renewal ability, and barrier functionality are highlighted. We also discuss the advances, limitations, and prospects of intestinal organoids for precision medicine. CONCLUSION: The latest strides made in research about intestinal organoids help elucidate intricate aspects of IBD pathogenesis, and pave the prospective avenues for novel therapeutic interventions.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Estudos Prospectivos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Intestinos/patologia , Organoides/patologia
7.
Sci Total Environ ; 921: 171170, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402979

RESUMO

Concurrent changing precipitation regimes and atmospheric nitrogen (N) deposition can have profound influences on soil carbon (C) cycling. However, how N enrichment regulates the responses of soil C fluxes to increasing variability of precipitation remains elusive. As part of a field precipitation gradient experiment with nine levels of precipitation amounts (-60 %, -45 %, -30 %, -15 %, ambient precipitation, +15 %, +30 %, +45 %, and +60 %) and two levels of N addition (0 and 10 g N m-2 yr-1) in a semi-arid temperate steppe on the Mongolian Plateau, this work was conducted to investigate the responses of soil respiration to decreased and increased precipitation (DP and IP), N addition, and their possible interactions. Averaged over the three years from 2019 to 2021, DP suppressed soil respiration by 16.1 %, whereas IP stimulated it by 27.4 %. Nitrogen addition decreased soil respiration by 7.1 % primarily via reducing microbial biomass C. Soil respiration showed symmetric responses to DP and IP within all the four precipitation variabilities (i.e., 15 %, 30 %, 45 %, and 60 %) under ambient N. Nevertheless, N addition did not alter the symmetric responses of soil respiration to changing precipitation due to the comparable sensitivities of microbial biomass and root growth to DP and IP under the N addition treatment. These findings indicate that intensified precipitation variability does not change but N addition could alleviate soil C releases. The unchanged symmetric responses of soil respiration to precipitation variability under N addition imply that N deposition may not change the response pattern of soil C releases to predicted increases in precipitation variability in grasslands, facilitating the robust projections of ecosystem C cycling under future global change scenarios.


Assuntos
Ecossistema , Pradaria , Nitrogênio/análise , Solo , Microbiologia do Solo , Carbono
8.
Theranostics ; 14(4): 1500-1516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389841

RESUMO

Rationale: Angiogenesis expedites tissue impairment in many diseases, including age-related macular degeneration (AMD), a leading cause of irreversible blindness in elderly. A substantial proportion of neovascular AMD patients, characterized by aberrant choroidal neovascularization (CNV), exhibit poor responses or adverse reactions to anti-VEGF therapy. Herein, we aimed to unveil the function of newly identified transfer RNA-derived small RNA, tRF-Glu-CTC, in the pathology of CNV and determine its potential in inhibiting angiogenesis. Methods: Small non-coding RNA sequencing and quantitative polymerase chain reaction were conducted to detect expression pattern of tRF-Glu-CTC in CNV development. Immunofluorescence staining, fundus fluorescein angiography and ex vivo choroidal sprouting assays were employed for the evaluation of tRF-Glu-CTC's function in CNV development. The role of tRF-Glu-CTC in endothelial cells were determined by in vitro endothelial cell proliferation, migration and tube formation assays. Transcriptome sequencing, dual-luciferase reporter assay and in vitro experiments were conducted to investigate downstream mechanism of tRF-Glu-CTC mediated pathology. Results: tRF-Glu-CTC exhibited substantial up-regulation in AMD patients, laser-induced CNV model, and endothelial cells under hypoxia condition, which is a hallmark of CNV. Inhibiting tRF-Glu-CTC reduced angiogenesis and hypoxia stress in the neovascular region without neuroretina toxicity in laser-induced CNV model, showing an anti-angiogenic effect comparable to bevacizumab, while overexpression of tRF-Glu-CTC significantly augmented CNV. Mechanically, under hypoxia condition, angiogenin was involved in the production of tRF-Glu-CTC, which in turn triggered endothelial cell tubulogenesis, migration and promoted the secretion of inflammatory factors via the suppression of vasohibin 1 (VASH1). When downregulating VASH1 expression, the inhibition of tRF-Glu-CTC showed minimal suppression on angiogenesis. Conclusions: This study demonstrated the important role of tRF-Glu-CTC in the progression of angiogenesis. Targeting of tRF-Glu-CTC may be an alternative to current anti-VEGF therapy for CNV in AMD and other conditions with angiogenesis.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Humanos , Idoso , Inibidores da Angiogênese/farmacologia , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade Visual , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/genética , Neovascularização de Coroide/tratamento farmacológico , Hipóxia/metabolismo , Proteínas de Ciclo Celular/metabolismo
9.
Inflamm Res ; 73(1): 99-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066108

RESUMO

INTRODUCTION: Oncogenic Ras-related GTP-binding proteins, referred to as Rabs, are characterized by their intricate interactions with upstream, downstream molecules, and notably, extracellular vesicles (EVs). While the expansive family of Rabs and their associated signaling pathways have been exhaustively dissected, Rab22a emerges as an entity of outstanding interest, owing to its potent influence in many biological processes and its conspicuous correlation with cancer metastasis and migration. A burgeoning interest in the interactions between Rab22a and EVs in the field of oncology underscores the necessity for more in-depth reviews and scholarly discourses. METHODS: We performed a review based on published original and review articles related to Rab22a, tumor, microRNA, exosome, microvesicles, EVs, CD147, lysosome, degradation, endosomal recycling, etc. from PubMed, Web of Science and Google Scholar databases. RESULTS AND CONCLUSIONS: We summarize the regulatory processes governing the expression of Rab22a and the mutants of Rab22a. Notably, the present understanding of complex interactions between Rab22a and EVs are highlighted, encompassing both the impact of Rab22a on the genesis of EVs and the role of EVs that are affected by Rab22a mutants in propelling tumor advancement. The dynamic interaction between Rab22a and EVs plays a significant role in the progression of tumors, and it can provide novel insights into the pathogenesis of cancers and the development of new therapeutic targets.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Humanos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , MicroRNAs/genética , Endossomos/metabolismo , Neoplasias/metabolismo , Vesículas Extracelulares/metabolismo
10.
Food Res Int ; 174(Pt 1): 113500, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986415

RESUMO

The colour of meat typically fades as it decays. However, it has been observed that certain vacuum-packaged spoiled hams can maintain a pink colour even when the packaging is bulged. A large amount of Zinc protoporphyrin IX (ZnPP) was found in these hams, compared to fresh red hams or spoiled and grey hams. Combined with high-throughput sequencing and cultural isolation, the potential cultures of Leuconostoc mesenteroides S-13 (LM), Leuconostoc citreum OCLC11 (LC), and Leuconostoc mesenteroides subsp. IMAU:80679 (LS) were selected based on their ability to produce ZnPP. Subsequently, these cultures were introduced into a fermented sausage model to assess their effect on colour conversion. The analysis of absorption and fluorescent spectra showed that Nitrite sausages contained nitrosyl heme pigment, while bacteria-inoculated sausages were predominantly composed of ZnPP. In addition, the a* value of the LS sausage was close to the Nitrite group at the end of fermentation, significantly higher than control, indicating the effect of bacterial metabolism on the redness. Meanwhile, the Ferrochelatase (FECH) activity of LM, LC and LS groups were 140 ± 13, 113 ± 16 and 201 ± 20 U/g sausage, respectively, providing a potential method on compensating for nitrite/nitrate substitution based on the presence of ZnPP in meat products.


Assuntos
Leuconostoc mesenteroides , Carne de Porco , Nitritos , Vácuo , Leuconostoc
11.
PeerJ Comput Sci ; 9: e1613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869457

RESUMO

In the field of e-commerce warehousing, maximizing the utilization of packing bins is a fundamental goal for all major logistics enterprises. However, determining the appropriate size of packing bins poses a practical challenge for many logistics companies. Given the limited research on the open-size 3D bin packing problem as well as the high complexity and lengthy computation time of existing models, this study focuses on optimizing multiple-bin sizes within the e-commerce context. Building upon existing research, we propose a hybrid integer programming model, denoted as the three dimensional multiple option dimensional rectangular packing problem (3D-MODRPP), to address the multiple-bin size 3D bin packing problem. Additionally, we leverage well-established hardware and software technologies to propose a 3D bin packing system capable of accommodating multiple bin types with open dimensions. To reduce the complexity of the model and the number of constraints, we introduce a novel assumption method for 0-1 integer variables in the overlap and rotation constraints. By applying this approach, we significantly streamline the computational complexity associated with the model calculations. Furthermore, we refine the dataset by developing a customized version based on the classical Three-Dimensional One-Size Dependent Rectangular Packing Problem (3D-ODRPP) dataset, leading to improved outcomes. Through comprehensive analysis of the research results, our model exhibits remarkable advancements in addressing the strong heterogeneous bin packing problem, the weak heterogeneous bin packing problem, the actual bin packing problem, and the bin packing problem with multiple bin types and open sizes. Specifically, it significantly reduces model complexity and computation time and increases space utilization. The system designed in this study paves the way for practical applications based on the proposed model, providing researchers with broader research prospects and directions to expand the scope of investigation in the field of 3D bin packing. Consequently, this system contributes to solving complex 3D packing problems, reducing space waste, and enhancing transportation efficiency.

12.
Exp Neurol ; 370: 114570, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37852469

RESUMO

Spinal cord injury (SCI) is a debilitating condition that is frequently accompanied by neuropathic pain, resulting in significant physical and psychological harm to a vast number of individuals globally. Despite the high prevalence of neuropathic pain following SCI, the precise underlying mechanism remains incompletely understood. Microglia are a type of innate immune cell that are present in the central nervous system (CNS). They have been observed to have a significant impact on neuropathic pain following SCI. This article presents a comprehensive overview of recent advances in understanding the role of microglia in the development of neuropathic pain following SCI. Specifically, the article delves into the detrimental and protective effects of microglia on neuropathic pain following SCI, as well as the mechanisms underlying their interconversion. Furthermore, the article provides a thorough overview of potential avenues for future research in this area.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Humanos , Microglia , Neuralgia/etiologia , Traumatismos da Medula Espinal/complicações , Medula Espinal
13.
Adv Sci (Weinh) ; 10(30): e2303527, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37712115

RESUMO

Brain temperature is a critical factor affecting neural activity and function, whose fluctuations may result in acute life-threatening health complications and chronic neuropathology. To monitor brain temperature, luminescent nanothermometry (LN) based on upconversion nanoparticles (UCNPs) with low autofluorescence has received extensive attention for its advantages in high temperature sensitivity and high response speed. However, most of current the LNs are based on optical imaging, which fails in temperature monitoring in deep brain regions at high spatial resolution. Here, the fiber microchannel sensor (FMS) loaded with UCNPs (UCNP-FMS) is presented for temperature monitoring at high spatial resolution in the deep brains of freely moving animals. The UCNP-FMS is fabricated by incorporating UCNPs in microchannels of optical fibers, whose diameter is ∼50 µm processed by femtosecond laser micromachining for spatially resolved sensing. The UCNPs provide thermal-sensitive upconversion emissions at dual wavelengths for ratiometric temperature sensing, ensuring a detection accuracy of ± 0.3 °C at 37 °C. Superior performances of UCNP-FMS are demonstrated by real-time temperature monitoring in different brain regions of freely moving animals under various conditions such as taking food, undergoing anesthesia/wakefulness, and suffering external temperature changes. Moreover, this study shows the capability of UCNP-FMS in distributed temperature sensing in mammalian brains in vivo.


Assuntos
Nanopartículas , Animais , Temperatura , Luminescência , Imagem Óptica , Encéfalo , Mamíferos
14.
Micromachines (Basel) ; 14(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37421044

RESUMO

Currently, coaxial electrohydrodynamic jet (CE-Jet) printing is used as a promising technique for the alternative fabrication of drop-on-demand micro- and nanoscale structures without using a template. Therefore, this paper presents numerical simulation of the DoD CE-Jet process based on a phase field model. Titanium lead zirconate (PZT) and silicone oil were used to verify the numerical simulation and the experiments. The optimized working parameters (i.e., inner liquid flow velocity 150 m/s, pulse voltage 8.0 kV, external fluid velocity 250 m/s, print height 16 cm) were used to control the stability of the CE-Jet, avoiding the bulging effect during experimental study. Consequently, different sized microdroplets with a minimum diameter of ~5.5 µm were directly printed after the removal of the outer solution. The model is considered the easiest to implement and is powerful for the application of flexible printed electronics in advanced manufacturing technology.

15.
Food Chem ; 428: 136751, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453392

RESUMO

The Leuconostoc mesenteroides subsp. IMAU:80679 (LM) was chosen for its superior capability in enhancing redness, and was incubated in a broth system containing metmyoglobin (MetMb) to investigate its mechanisms for color improvement. The a* value of LM group reached its highest level of 52.75 ± 1.04 at 24 h, significantly higher than control of 19.75 ± 0.6 (p < 0.05). The addition of LM could inhibit myoglobin oxidation to some extent. Meanwhile, higher content of nitrosylmyoglobin (NOMb) and Zn-protoporphyrin (Znpp) were observed in LM samples during the whole incubation period. Furthermore, enzymatic activity and encoded genes related to MetMb reduction and pigment formation were determined to explain its possible mechanism on color enhancement. Finally, by extracting crude enzymes and adding them to meat batters, the redness of crude enzyme group was comparable to that achieved with 20 ppm nitrite, providing a potential method on compensating for nitrite/nitrate substitution in meat products.


Assuntos
Leuconostoc mesenteroides , Mioglobina , Mioglobina/metabolismo , Leuconostoc mesenteroides/genética , Leuconostoc mesenteroides/metabolismo , Nitritos , Carne , Metamioglobina , Oxirredução , Cor
16.
Traffic ; 24(9): 397-412, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37340959

RESUMO

Endosomal cargo recycling lies at the heart of subcellular trafficking processes under the management of several Ras-related GTP-binding proteins (Rabs) which are coordinated by their upstream regulators and require their downstream effectors to display their functions. In this regard, several Rabs have been well-reviewed except Rab22a. Rab22a is a crucial regulator of vesicle trafficking, early endosome and recycling endosome formation. Notably, recent studies demonstrated the immunological roles of Rab22a, which are closely associated with cancers, infection and autoimmune disorders. This review provides an overview of the regulators and effectors of Rab22a. Also, we highlight the current knowledge of the role of Rab22a in endosomal cargo recycling, including the biogenesis of recycling tubules with the help of a complex with Rab22a at its core, and how different internalized cargo chooses different recycling routes thanks to the cooperation of Rab22a, its effectors and its regulators. Of note, contradictions and speculation related to endosomal cargo recycling that Rab22a brings impacts on are also discussed. Finally, this review endeavors to briefly introduce the various events impacted by Rab22a, particularly focusing on the commandeered Rab22a-associated endosomal maturation and endosomal cargo recycling, in addition to the extensively investigated oncogenic role of Rab22a.


Assuntos
Endossomos , Proteínas rab de Ligação ao GTP , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Comunicação Celular
17.
Foods ; 12(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37372514

RESUMO

(1) Background: Propolis has attracted attention in recent years due to its important pharmacological effects. The present study aimed to investigate the botanical origins of 39 propolis samples and evaluate their antioxidant activities; (2) Methods: A HPLC-PDA system was used to analyze the phenolic compositions of propolis and poplar bud resin samples. The antioxidant activities of propolis samples were evaluated by oxygen radical absorption capacity (ORAC) and superoxide anion free radical scavenging capacity assay; (3) Results: Our study shows that 17 propolis samples were characterized by five predominant flavonoids, including 5-methoxy pinobanksin, pinobanksin, pinocembrin, pinobanksin-3-acetate, and chrysin, while 22 propolis samples were characterized by four flavonoids (pinobanksin, pinocembrin, pinobanksin-3-acetate, and chrysin). The average contents of characteristic flavonoids reached up to over 70% and 65% of total phenolics, respectively. Furthermore, the botanical origins of the two types of propolis samples were identified as Populus × euramericana cv. 'Neva' and Populus Simonii × P. nigra, respectively; (4) Conclusions: Most notably, our results reveal that these propolis samples presented excellent antioxidant activities due to their high contents of flavonoid. These flavonoid-rich propolis samples can thus be used to develop low-allergen and high-antioxidant nutraceuticals.

18.
Exp Eye Res ; 233: 109538, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308049

RESUMO

Diabetic retinopathy (DR) is an important complication of diabetes mellitus and a prevalent blind-causing ophthalmic disease. Despite years of efforts, rapid and accurate diagnosis of DR remains a challenging task. Metabolomics has been used as a diagnostic tool for disease progression and therapy monitoring. In this study, retinal tissues were collected from diabetic mice and age-matched non-diabetic mice. An unbiased metabolic profiling was performed to identify the altered metabolites and metabolic pathways in DR. 311 differential metabolites were identified between diabetic retinas and non-diabetic retinas under the criteria of variable importance in projection (VIP) > 1 and P < 0.05. These differential metabolites were highly enriched in purine metabolism, amino acid metabolism, glycerophospholipid metabolism, and pantaothenate and CoA biosynthesis. We then evaluated the sensitivity and specificity of purine metabolites as the candidate biomarkers for DR through the area under the receiver-operating characteristic curves (AUC-ROCs). Compared with other purine metabolites, adenosine, guanine, and inosine had higher sensitivity, specificity, and accuracy for DR prediction. In conclusion, this study sheds new light on the metabolic mechanism of DR, which can facilitate clinical diagnosis, therapy, and prognosis of DR in the future.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Camundongos , Retinopatia Diabética/metabolismo , Diabetes Mellitus Experimental/complicações , Prognóstico , Progressão da Doença , Purinas
19.
Sci Adv ; 9(22): eadg0218, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267364

RESUMO

In vivo detection of neurochemicals, including neurotransmitters and neuromodulators, is critical for both understanding brain mechanisms and diagnosing brain diseases. However, few sensors are competent in monitoring neurochemical dynamics in vivo at high specificity. Here, we propose the fiber-optic probes based on engineered cells (FOPECs) for plug-and-play, real-time detection of neurochemicals in freely moving animals. Taking advantages of life-evolved neurochemical receptors as key components, the chemical specificity of FOPECs is unprecedented. We demonstrate the applications of FOPECs in real-time monitoring of neurochemical dynamics under various physiology and pathology conditions. With no requirement of viral infection in advance and no dependence on animal species, FOPECs can be widely adopted in vertebrates, such as mice, rats, rabbits, and chickens. Moreover, FOPECs can be used to monitor drug metabolisms in vivo. We demonstrated the neurochemical monitoring in blood circulation systems in vivo. We expect that FOPECs will benefit not only neuroscience study but also drug discovery.


Assuntos
Encefalopatias , Galinhas , Ratos , Camundongos , Animais , Coelhos , Galinhas/metabolismo , Encéfalo/metabolismo , Tecnologia de Fibra Óptica , Cabeça , Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...