Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 828, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670252

RESUMO

BACKGROUND: The goal was to investigate the feasibility of the registration generative adversarial network (RegGAN) model in image conversion for performing adaptive radiation therapy on the head and neck and its stability under different cone beam computed tomography (CBCT) models. METHODS: A total of 100 CBCT and CT images of patients diagnosed with head and neck tumors were utilized for the training phase, whereas the testing phase involved 40 distinct patients obtained from four different linear accelerators. The RegGAN model was trained and tested to evaluate its performance. The generated synthetic CT (sCT) image quality was compared to that of planning CT (pCT) images by employing metrics such as the mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). Moreover, the radiation therapy plan was uniformly applied to both the sCT and pCT images to analyze the planning target volume (PTV) dose statistics and calculate the dose difference rate, reinforcing the model's accuracy. RESULTS: The generated sCT images had good image quality, and no significant differences were observed among the different CBCT modes. The conversion effect achieved for Synergy was the best, and the MAE decreased from 231.3 ± 55.48 to 45.63 ± 10.78; the PSNR increased from 19.40 ± 1.46 to 26.75 ± 1.32; the SSIM increased from 0.82 ± 0.02 to 0.85 ± 0.04. The quality improvement effect achieved for sCT image synthesis based on RegGAN was obvious, and no significant sCT synthesis differences were observed among different accelerators. CONCLUSION: The sCT images generated by the RegGAN model had high image quality, and the RegGAN model exhibited a strong generalization ability across different accelerators, enabling its outputs to be used as reference images for performing adaptive radiation therapy on the head and neck.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Cabeça , Pescoço , Benchmarking , Tomografia Computadorizada de Feixe Cônico
2.
Strahlenther Onkol ; 199(5): 485-497, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36688953

RESUMO

OBJECTIVE: This study aimed to improve the image quality and CT Hounsfield unit accuracy of daily cone-beam computed tomography (CBCT) using registration generative adversarial networks (RegGAN) and apply synthetic CT (sCT) images to dose calculations in radiotherapy. METHODS: The CBCT/planning CT images of 150 esophageal cancer patients undergoing radiotherapy were used for training (120 patients) and testing (30 patients). An unsupervised deep-learning method, the 2.5D RegGAN model with an adaptively trained registration network, was proposed, through which sCT images were generated. The quality of deep-learning-generated sCT images was quantitatively compared to the reference deformed CT (dCT) image using mean absolute error (MAE), root mean square error (RMSE) of Hounsfield units (HU), and peak signal-to-noise ratio (PSNR). The dose calculation accuracy was further evaluated for esophageal cancer radiotherapy plans, and the same plans were calculated on dCT, CBCT, and sCT images. RESULTS: The quality of sCT images produced by RegGAN was significantly improved compared to the original CBCT images. ReGAN achieved image quality in the testing patients with MAE sCT vs. CBCT: 43.7 ± 4.8 vs. 80.1 ± 9.1; RMSE sCT vs. CBCT: 67.2 ± 12.4 vs. 124.2 ± 21.8; and PSNR sCT vs. CBCT: 27.9 ± 5.6 vs. 21.3 ± 4.2. The sCT images generated by the RegGAN model showed superior accuracy on dose calculation, with higher gamma passing rates (93.3 ± 4.4, 90.4 ± 5.2, and 84.3 ± 6.6) compared to original CBCT images (89.6 ± 5.7, 85.7 ± 6.9, and 72.5 ± 12.5) under the criteria of 3 mm/3%, 2 mm/2%, and 1 mm/1%, respectively. CONCLUSION: The proposed deep-learning RegGAN model seems promising for generation of high-quality sCT images from stand-alone thoracic CBCT images in an efficient way and thus has the potential to support CBCT-based esophageal cancer adaptive radiotherapy.


Assuntos
Neoplasias Esofágicas , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...