Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 17(4): 1425-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25314920

RESUMO

Regulatory roles of the basic leucine zipper (bZIP) transcription factors (TFs) in fungi have been identified in diverse cellular processes such as development, nutrient utilization and various stress responses. In this study, the 22 Magnaporthe oryzae genes encoding bZIP TFs were systematically characterized. Phylogenetic analysis of fungal bZIP TFs revealed that seven MobZIPs are Magnaporthe-specific, while others belongs to 15 clades of orthologous Ascomycota genes. Expression patterns of MobZIPs under various conditions showed that they are highly stress responsive. We generated deletion mutants for 13 MobZIPs: nine with orthologues in other fungal species and four Magnaporthe-specific ones. Seven of them exhibited defects in mycelial growth, development and/or pathogenicity. Consistent with the conserved functions of the orthologues, MobZIP22 and MobZIP13 played a role in sulfur metabolism and iron homeostasis respectively. Along with MobZIP22 and MobZIP13, one Magnaporthe-specific gene, MobZIP11 is essential for pathogenicity in a reactive oxygen species-dependent manner. Taken together, our results will contribute to understanding the regulatory mechanisms of the bZIP TF gene family in fungal development, adaptation to environmental stresses and pathogenicity in the rice blast fungus.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Magnaporthe/genética , Família Multigênica , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungos/química , Fungos/classificação , Fungos/genética , Magnaporthe/química , Magnaporthe/classificação , Magnaporthe/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
2.
Plant Pathol J ; 30(2): 136-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25288996

RESUMO

Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (ΔMofkh1) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ΔMohcm1 exhibited reduced mycelial growth and conidial germination. Conidia of ΔMofkh1 and ΔMohcm1 were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (ΔMofox1) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and Mo-HCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.

3.
PLoS Pathog ; 9(6): e1003350, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762023

RESUMO

Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Estresse Oxidativo/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Magnaporthe/genética , Mutação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética
4.
PLoS Genet ; 5(12): e1000757, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19997500

RESUMO

The appropriate development of conidia and appressoria is critical in the disease cycle of many fungal pathogens, including Magnaporthe oryzae. A total of eight genes (MoHOX1 to MoHOX8) encoding putative homeobox transcription factors (TFs) were identified from the M. oryzae genome. Knockout mutants for each MoHOX gene were obtained via homology-dependent gene replacement. Two mutants, DeltaMohox3 and DeltaMohox5, exhibited no difference to wild-type in growth, conidiation, conidium size, conidial germination, appressorium formation, and pathogenicity. However, the DeltaMohox1 showed a dramatic reduction in hyphal growth and increase in melanin pigmentation, compared to those in wild-type. DeltaMohox4 and DeltaMohox6 showed significantly reduced conidium size and hyphal growth, respectively. DeltaMohox8 formed normal appressoria, but failed in pathogenicity, probably due to defects in the development of penetration peg and invasive growth. It is most notable that asexual reproduction was completely abolished in DeltaMohox2, in which no conidia formed. DeltaMohox2 was still pathogenic through hypha-driven appressoria in a manner similar to that of the wild-type. However, DeltaMohox7 was unable to form appressoria either on conidial germ tubes, or at hyphal tips, being non-pathogenic. These factors indicate that M. oryzae is able to cause foliar disease via hyphal appressorium-mediated penetration, and MoHOX7 is mutually required to drive appressorium formation from hyphae and germ tubes. Transcriptional analyses suggest that the functioning of M. oryzae homeobox TFs is mediated through the regulation of gene expression and is affected by cAMP and Ca(2+) signaling and/or MAPK pathways. The divergent roles of this gene set may help reveal how the genome and regulatory pathways evolved within the rice blast pathogen and close relatives.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Homeodomínio/metabolismo , Magnaporthe/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Magnaporthe/genética , Magnaporthe/patogenicidade , Magnaporthe/ultraestrutura , Fenótipo , Filogenia , Transdução de Sinais , Esporos Fúngicos/genética , Esporos Fúngicos/ultraestrutura , Transcrição Gênica , Transformação Genética
5.
Bioinformatics ; 24(7): 1024-5, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18304934

RESUMO

SUMMARY: Genomes of more than 60 fungal species have been sequenced to date, yet there has been no systematic approach to analyze fungal transcription factors (TFs) kingdom widely. We developed a standardized pipeline for annotating TFs in fungal genomes. Resulting data have been archived in a new database termed the Fungal Transcription Factor Database (FTFD). In FTFD, 31,832 putative fungal TFs, identified from 62 fungal and 3 Oomycete species, were classified into 61 families and phylogenetically analyzed. The FTFD will serve as a community resource supporting comparative analyses of the distribution and domain structure of TFs within and across species. AVAILABILITY: All data described in this study can be browsed through the FTFD web site at http://ftfd.snu.ac.kr/.


Assuntos
Mapeamento Cromossômico/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas , Evolução Molecular , Proteínas Fúngicas/genética , Família Multigênica/genética , Fatores de Transcrição/genética , Genômica/métodos , Filogenia
6.
Nucleic Acids Res ; 36(Database issue): D562-71, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17947331

RESUMO

Since the completion of the Saccharomyces cerevisiae genome sequencing project in 1996, the genomes of over 80 fungal species have been sequenced or are currently being sequenced. Resulting data provide opportunities for studying and comparing fungal biology and evolution at the genome level. To support such studies, the Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr), a web-based multifunctional informatics workbench, was developed. The CFGP comprises three layers, including the basal layer, middleware and the user interface. The data warehouse in the basal layer contains standardized genome sequences of 65 fungal species. The middleware processes queries via six analysis tools, including BLAST, ClustalW, InterProScan, SignalP 3.0, PSORT II and a newly developed tool named BLASTMatrix. The BLASTMatrix permits the identification and visualization of genes homologous to a query across multiple species. The Data-driven User Interface (DUI) of the CFGP was built on a new concept of pre-collecting data and post-executing analysis instead of the 'fill-in-the-form-and-press-SUBMIT' user interfaces utilized by most bioinformatics sites. A tool termed Favorite, which supports the management of encapsulated sequence data and provides a personalized data repository to users, is another novel feature in the DUI.


Assuntos
Bases de Dados Genéticas , Genoma Fúngico , Biologia Computacional , DNA Fúngico/química , Proteínas Fúngicas/química , Genômica , Internet , Homologia de Sequência do Ácido Nucleico , Software , Interface Usuário-Computador
7.
Nat Genet ; 39(4): 561-5, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17353894

RESUMO

Rapid translation of genome sequences into meaningful biological information hinges on the integration of multiple experimental and informatics methods into a cohesive platform. Despite the explosion in the number of genome sequences available, such a platform does not exist for filamentous fungi. Here we present the development and application of a functional genomics and informatics platform for a model plant pathogenic fungus, Magnaporthe oryzae. In total, we produced 21,070 mutants through large-scale insertional mutagenesis using Agrobacterium tumefaciens-mediated transformation. We used a high-throughput phenotype screening pipeline to detect disruption of seven phenotypes encompassing the fungal life cycle and identified the mutated gene and the nature of mutation for each mutant. Comparative analysis of phenotypes and genotypes of the mutants uncovered 202 new pathogenicity loci. Our findings demonstrate the effectiveness of our platform and provide new insights on the molecular basis of fungal pathogenesis. Our approach promises comprehensive functional genomics in filamentous fungi and beyond.


Assuntos
Genoma Fúngico , Magnaporthe/genética , Fatores de Virulência/genética , Fatores de Virulência/fisiologia , Agrobacterium tumefaciens/genética , Mapeamento Cromossômico , Cromossomos Fúngicos , Genes Fúngicos/fisiologia , Genótipo , Modelos Biológicos , Organismos Geneticamente Modificados , Fenótipo , Fatores de Virulência/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...