Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35446025

RESUMO

Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.

2.
Chem Mater ; 33(6): 1964-1975, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-34219920

RESUMO

The size-dependent optoelectronic properties of semiconductor nanocrystals quantum dots (QDs) are hugely beneficial for color tunability but induce an inherent relative PL brightness mismatch in QDs emitting different colors, as larger emitters absorb more incident photons than smaller particles. Here, we examine the effect of core composition, shell composition, and shell thickness on optical properties including high energy absorption, quantum yield (QY), and the relative brightness of InP/ZnS and InP/ZnSe core/shell and InP/ZnSe/ZnS core/shell/shell QDs at different excitation wavelengths. Our analysis reveals that the presence of an intermediate ZnSe shell changes the wavelength of enhanced absorption onset and leads to highly excitation wavelength dependent QYs. Switching from commercial CdSe/ZnS to InP/ZnS reduces the brightness-mismatch between green and red emitters from 33- to 5-fold. Incorporating a 4-monolayer thick optically absorbing ZnSe shell into the QD heterostructure and heating the QDs in a solution of zinc oleate and trioctylphosphine produces InP/ZnSe/ZnS QDs that are ~10-fold brighter than their InP/ZnS counterparts. In contrast to CdSe/CdS/ZnS core/shell/shell QDs, which only photoluminesce at red wavelengths with thicker CdS shells due to their Quasi-Type II bandstructure, Type I InP/ZnSe/ZnS QDs are uniquely suited to creating a rainbow of visible-emitting, brightness matched emitters. By tailoring the thickness of the intermediate ZnSe shell, heavy metal-free, brightness-matched green and red emitters are produced. This study highlights the ability to overcome the inherent brightness mismatch seen in QDs through concerted materials design of heterostructured core/shell InP-based QDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...