Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(4): 4945-4963, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35984800

RESUMO

In this paper, we propose some efficient multi-view stereo methods for accurate and complete depth map estimation. We first present our basic methods with Adaptive Checkerboard sampling and Multi-Hypothesis joint view selection (ACMH & ACMH+). Based on our basic models, we develop two frameworks to deal with the depth estimation of ambiguous regions (especially low-textured areas) from two different perspectives: multi-scale information fusion and planar geometric clue assistance. For the former one, we propose a multi-scale geometric consistency guidance framework (ACMM) to obtain the reliable depth estimates for low-textured areas at coarser scales and guarantee that they can be propagated to finer scales. For the latter one, we propose a planar prior assisted framework (ACMP). We utilize a probabilistic graphical model to contribute a novel multi-view aggregated matching cost. At last, by taking advantage of the above frameworks, we further design a multi-scale geometric consistency guided and planar prior assisted multi-view stereo (ACMMP). This greatly enhances the discrimination of ambiguous regions and helps their depth sensing. Experiments on extensive datasets show our methods achieve state-of-the-art performance, recovering the depth estimation not only in low-textured areas but also in details. Related codes are available at https://github.com/GhiXu.

2.
Sci Rep ; 11(1): 18655, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545144

RESUMO

Study on the microscopic structure of saline-alkali soil can reveal the change of its permeability more deeply. In this paper, the relationship between permeability and microstructure of saline-alkali soil with different dry densities and water content in the floodplain of southwestern Shandong Province was studied through freeze-thaw cycles. A comprehensive analysis of soil samples was conducted using particle-size distribution, X-ray diffraction, freeze-thaw cycles test, saturated hydraulic conductivity test and mercury intrusion porosimetry. The poor microstructure of soil is the main factor that leads to the category of micro-permeable soil. The porosity of the local soil was only 6.19-11.51%, and ultra-micropores (< 0.05 µm) and micropores (0.05-2 µm) dominated the pore size distribution. Soil saturated water conductivity was closely related to its microscopic pore size distribution. As the F-T cycles progressed, soil permeability became stronger, with the reason the pore size distribution curve began to shift to the small pores (2-10 µm) and mesopores (10-20 µm), and this effect was the most severe when the freeze-thaw cycle was 15 times. High water content could promote the effects of freeze-thaw cycles on soil permeability and pore size distribution, while the increase of dry density could inhibit these effects. The results of this study provide a theoretical basis for the remediation of saline-alkali soil in the flooded area of Southwest Shandong.

3.
Rev Sci Instrum ; 88(11): 115003, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195385

RESUMO

In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

4.
Sensors (Basel) ; 16(9)2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27563907

RESUMO

Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...