Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790491

RESUMO

Rationale: Duration of mechanical ventilation is associated with adverse outcomes in critically ill patients and increased use of resources. The increasing complexity of medication regimens has been associated with increased mortality, length of stay, and fluid overload but has never been studied specifically in the setting of mechanical ventilation. Objective: The purpose of this analysis was to develop prediction models for mechanical ventilation duration to test the hypothesis that incorporating medication data may improve model performance. Methods: This was a retrospective cohort study of adults admitted to the ICU and undergoing mechanical ventilation for longer than 24 hours from October 2015 to October 2020. Patients were excluded if it was not their index ICU admission or if the patient was placed on comfort care in the first 24 hours of admission. Relevant patient characteristics including age, sex, body mass index, admission diagnosis, morbidities, vital signs measurements, severity of illness, medication regimen complexity as measured by the MRC-ICU, and medical treatments before intubation were collected. The primary outcome was area under the receiver operating characteristic (AUROC) of prediction models for prolonged mechanical ventilation (defined as greater than 5 days). Both logistic regression and supervised learning techniques including XGBoost, Random Forest, and Support Vector Machine were used to develop prediction models. Results: The 318 patients [age 59.9 (SD 16.9), female 39.3%, medical 28.6%] had mean 24-hour MRC-ICU score of 21.3 (10.5), mean APACHE II score of 21.0 (5.4), mean SOFA score of 9.9 (3.3), and ICU mortality rate of 22.6% (n=72). The strongest performing logistic model was the base model with MRC-ICU added, with AUROC of 0.72, positive predictive value (PPV) of 0.83, and negative prediction value (NPV) of 0.92. The strongest overall model was Random Forest with an AUROC of 0.78, a PPV of 0.53, and NPV of 0.90. Feature importance analysis using support vector machine and Random Forest revealed severity of illness scores and medication related data were the most important predictors. Conclusions: Medication regimen complexity is significantly associated with prolonged duration of mechanical ventilation in critically ill patients, and prediction models incorporating medication information showed modest improvement in this prediction.

2.
Front Med (Lausanne) ; 9: 827261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463024

RESUMO

Objectives: An accurate prognostic score to predict mortality for adults with COVID-19 infection is needed to understand who would benefit most from hospitalizations and more intensive support and care. We aimed to develop and validate a two-step score system for patient triage, and to identify patients at a relatively low level of mortality risk using easy-to-collect individual information. Design: Multicenter retrospective observational cohort study. Setting: Four health centers from Virginia Commonwealth University, Georgetown University, the University of Florida, and the University of California, Los Angeles. Patients: Coronavirus Disease 2019-confirmed and hospitalized adult patients. Measurements and Main Results: We included 1,673 participants from Virginia Commonwealth University (VCU) as the derivation cohort. Risk factors for in-hospital death were identified using a multivariable logistic model with variable selection procedures after repeated missing data imputation. A two-step risk score was developed to identify patients at lower, moderate, and higher mortality risk. The first step selected increasing age, more than one pre-existing comorbidities, heart rate >100 beats/min, respiratory rate ≥30 breaths/min, and SpO2 <93% into the predictive model. Besides age and SpO2, the second step used blood urea nitrogen, absolute neutrophil count, C-reactive protein, platelet count, and neutrophil-to-lymphocyte ratio as predictors. C-statistics reflected very good discrimination with internal validation at VCU (0.83, 95% CI 0.79-0.88) and external validation at the other three health systems (range, 0.79-0.85). A one-step model was also derived for comparison. Overall, the two-step risk score had better performance than the one-step score. Conclusions: The two-step scoring system used widely available, point-of-care data for triage of COVID-19 patients and is a potentially time- and cost-saving tool in practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...