Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122755, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378812

RESUMO

Membrane fouling, including organic, inorganic, and biological fouling, poses enormous challenges in membrane water treatment. Incorporation of copper-based nanomaterials in polymeric membranes is highly favored due to their exceptional antibacterial properties and capacity to improve membrane hydrophilicity. This review extensively explores the utilization of copper-based nanomaterials in membrane technology for water treatment, with a specific focus on enhancing anti-fouling performance. It elaborates on how copper-based nanomaterials improve the surface properties of membrane materials (such as porosity, hydrophilicity, surface charge, etc.) through physical and chemical processes. It summarizes the properties and potential antibacterial mechanisms of copper-based nanomaterials, primarily by disrupting microbial cell structures through the generation of reactive oxygen species (ROS). Furthermore, recent efforts to enhance the environmental sustainability, cost-effectiveness, and recyclability of copper-based nanomaterials are outlined. The attempts to offer insights for the advancement of anti-fouling practices in water treatment through the use of copper-modified polymer membranes.

2.
Chemosphere ; 366: 143457, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366488

RESUMO

Rhodopseudomonas palustris immobilized on multiple materials was used to invistigate Cr(VI) adsorption and bioreduction. The highest Cr(VI) removal (97.5%) was achieved at 276h under the opitimed conditions of 2.5% SA, 8% PVA, and 50% filling degree. The highest adsorption capacity was obtained at 11.75 mg g-1 under 300 mg L-1 Cr(VI). Results from adsorption kinetics and isotherms indicated that Cr(VI) adsorption of immobilized photosynthetic bacteria (IPSB) was consistent with the Freundich model and the pseudo-second-order kinetic model (qe = 14.00 mg g-1). SEM and FTIR analyses verified that the porous multilayer network structure of IPSB provided more adsorption sites and functional groups for the removal of Cr(VI). Furthermore, the maximum Cr(VI) reduction efficiency of IPSB was achieved at 10.80 mg g-1, which correlated with the up-regulation of chrR gene expressions at 100 mg L-1 Cr(VI). This study demonstrated the dual mechanisms of Cr(VI) removal in IPSB-treated Cr wastewater, involving both chemisorption and bioreduction working synergistically.

3.
Environ Pollut ; 362: 125019, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326826

RESUMO

The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA