Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13748, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877068

RESUMO

Subcellular membranes have complex lipid and protein compositions, which give rise to organelle-specific membrane packing, fluidity, and permeability. Due to its exquisite solvent sensitivity, the lipophilic fluorescence dye Nile Red has been used extensively to study membrane packing and polarity. Further improvement of Nile Red can be achieved by introducing electron-donating or withdrawing functional groups. Here, we compare the potential of derivatives of Nile Red with such functional substitutions for super-resolution fluorescence microscopy of lipid packing in model membranes and living cells. All studied Nile Red derivatives exhibit cholesterol-dependent fluorescence changes in model membranes, as shown by spectrally resolved stimulated emission depletion (STED) microscopy. STED imaging of Nile Red probes in cells reveals lower membrane packing in fibroblasts from healthy subjects compared to those from patients suffering from Niemann Pick type C1 (NPC1) disease, a lysosomal storage disorder with accumulation of cholesterol and sphingolipids in late endosomes and lysosomes. We also find small but consistent changes in the fluorescence lifetime of the Nile Red derivatives in NPC1 cells, suggesting altered hydrogen-bonding capacity in their membranes. All Nile Red derivatives are essentially non-fluorescent in water but increase their brightness in membranes, allowing for their use in MINFLUX single molecule tracking experiments. Our study uncovers the potential of Nile Red probes with functional substitutions for nanoscopic membrane imaging.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência , Oxazinas , Oxazinas/química , Humanos , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Colesterol/metabolismo , Fibroblastos/metabolismo , Membrana Celular/metabolismo
2.
J Chem Theory Comput ; 20(9): 3729-3740, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691524

RESUMO

We explore Davidson methods for obtaining excitation energies and other linear response properties within the recently developed quantum self-consistent linear response (q-sc-LR) method. Davidson-type methods allow for obtaining only a few selected excitation energies without explicitly constructing the electronic Hessian since they only require the ability to perform Hessian-vector multiplications. We apply the Davidson method to calculate the excitation energies of hydrogen chains (up to H10) and analyze aspects of statistical noise for computing excitation energies on quantum simulators. Additionally, we apply Davidson methods for computing linear response properties such as static polarizabilities for H2, LiH, H2O, OH-, and NH3, and show that unitary coupled cluster outperforms classical projected coupled cluster for molecular systems with strong correlation. Finally, we formulate the Davidson method for damped (complex) linear response, with application to the nitrogen K-edge X-ray absorption of ammonia, and the C6 coefficients of H2, LiH, H2O, OH-, and NH3.

3.
J Chem Theory Comput ; 20(9): 3613-3625, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701352

RESUMO

Determining the properties of molecules and materials is one of the premier applications of quantum computing. A major question in the field is how to use imperfect near-term quantum computers to solve problems of practical value. Inspired by the recently developed variants of the quantum counterpart of the equation-of-motion (qEOM) approach and the orbital-optimized variational quantum eigensolver (oo-VQE), we present a quantum algorithm (oo-VQE-qEOM) for the calculation of molecular properties by computing expectation values on a quantum computer. We perform noise-free quantum simulations of BeH2 in the series of STO-3G/6-31G/6-31G* basis sets and of H4 and H2O in 6-31G using an active space of four electrons and four spatial orbitals (8 qubits) to evaluate excitation energies, electronic absorption, and, for twisted H4, circular dichroism spectra. We demonstrate that the proposed algorithm can reproduce the results of conventional classical CASSCF calculations for these molecular systems.

4.
J Phys Chem B ; 128(22): 5320-5326, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38805723

RESUMO

It is still a puzzle that has not been entirely solved how migratory birds utilize the Earth's magnetic field for biannual migration. The most consistent explanation thus far is rooted in the modulation of the biological function of the cryptochrome 4 (Cry4) protein by an external magnetic field. This phenomenon is closely linked with the flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the protein. Cry4 is activated by blue light, which is absorbed by the FAD cofactor. Subsequent electron and proton transfers trigger radical pair formation in the protein, which is sensitive to the external magnetic field. An important long-lasting redox state of the FAD cofactor is the signaling (FADH•) state, which is present after the transient electron transfer steps have been completed. Recent experimental efforts succeeded in crystallizing the Cry4 protein from Columbia livia (ClCry4) with all of the important residues needed for protein photoreduction. This specific crystallization of Cry4 protein so far is the only avian cryptochrome crystal structure available, which, however, has great similarity to the Cry4 proteins of night migratory birds. The previous experimental studies of the ClCry4 protein included the absorption properties of the protein in its different redox states. The absorption spectrum of the FADH• state demonstrated a peculiar red shift compared to the photoabsorption properties of the FAD cofactor in its FADH• state in other Cry proteins from other species. The aim of this study is to understand this red shift by employing the tools of computational microscopy and, in particular, a QM/MM approach that relies on the polarizable embedding approximation.


Assuntos
Criptocromos , Flavina-Adenina Dinucleotídeo , Criptocromos/química , Criptocromos/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Animais , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Oxirredução
5.
J Chem Theory Comput ; 20(9): 3551-3565, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38662999

RESUMO

Linear response (LR) theory is a powerful tool in classic quantum chemistry crucial to understanding photoinduced processes in chemistry and biology. However, performing simulations for large systems and in the case of strong electron correlation remains challenging. Quantum computers are poised to facilitate the simulation of such systems, and recently, a quantum linear response formulation (qLR) was introduced [Kumar et al., J. Chem. Theory Comput. 2023, 19, 9136-9150]. To apply qLR to near-term quantum computers beyond a minimal basis set, we here introduce a resource-efficient qLR theory, using a truncated active-space version of the multiconfigurational self-consistent field LR ansatz. Therein, we investigate eight different near-term qLR formalisms that utilize novel operator transformations that allow the qLR equations to be performed on near-term hardware. Simulating excited state potential energy curves and absorption spectra for various test cases, we identify two promising candidates, dubbed "proj LRSD" and "all-proj LRSD".

6.
J Chem Theory Comput ; 20(9): 3406-3412, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687240

RESUMO

Core-electron excitations in solvated systems, influenced by solvent geometry and hydrogen bonding, make X-ray absorption spectroscopy (XAS) a valuable tool for assessing solvent-solute interactions. However, calculating XAS spectra with electronic-structure methods has proven challenging due to a delicate interplay between correlation and solvation effects. This study provides a computational procedure for XAS modeling in solvated systems, with water-solvated ammonia and ammonium systems serving as probes. Exploring methodological challenges, we investigate explicit embedding models, specifically the polarizable embedding family, including polarizable density embedding and extended polarizable density embedding. Our linear-response time-dependent density functional theory (LR-TDDFT) XAS calculations reveal the efficiency of this approach, with extended polarizable density embedding emerging as a robust improvement over polarizable density embedding. Contrary to some recent literature, our study challenges the belief that LR-TDDFT cannot accurately describe XAS spectra of ammonia and ammonium solvated in water.

7.
J Phys Chem B ; 128(12): 2864-2873, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489248

RESUMO

Bovine rhodopsin is among the most studied proteins in the rhodopsin family. Its primary activation mechanism is the photoisomerization of 11-cis retinal, triggered by the absorption of a UV-visible photon. Different mutants of the same rhodopsin show different absorption wavelengths due to the influence of the specific amino acid residues forming the cavity in which the retinal chromophore is embedded, and rhodopsins activated at different wavelengths are, for example, exploited in the field of optogenetics. In this letter, we present a procedure for systematically investigating color tuning in models of bovine rhodopsin and a set of its mutants embedded in a membrane bilayer. Vertical excitation energy calculations were carried out with the polarizable embedding potential for describing the environment surrounding the chromophore. We show that polarizable embedding outperformed regular electrostatic embedding in determining both the vertical excitation energies and associated oscillator strengths of the systems studied.


Assuntos
Retina , Rodopsina , Animais , Bovinos , Rodopsina/química , Retinaldeído , Fótons
8.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38533884

RESUMO

We formulate and implement the Variational Quantum Eigensolver Self Consistent Field (VQE-SCF) algorithm in combination with polarizable embedding (PE), thereby extending PE to the regime of quantum computing. We test the resulting algorithm, PE-VQE-SCF, on quantum simulators and demonstrate that the computational stress on the quantum device is only slightly increased in terms of gate counts compared to regular VQE-SCF. On the other hand, no increase in shot noise was observed. We illustrate how PE-VQE-SCF may lead to the modeling of real chemical systems using a simulation of the reaction barrier of the Diels-Alder reaction between furan and ethene as an example.

9.
Sci Rep ; 13(1): 21217, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040777

RESUMO

P-glycoprotein (P-gp), a membrane transport protein overexpressed in certain drug-resistant cancer cells, has been the target of numerous drug discovery projects aimed at overcoming drug resistance in cancer. Most characterized P-gp inhibitors bind at the large hydrophobic drug binding domain (DBD), but none have yet attained regulatory approval. In this study, we explored the potential of designing inhibitors that target the nucleotide binding domains (NBDs), by computationally screening a large library of 2.6 billion synthesizable molecules, using a combination of machine learning-guided molecular docking and molecular dynamics (MD). 14 of the computationally best-scoring molecules were subsequently tested for their ability to inhibit P-gp mediated calcein-AM efflux. In total, five diverse compounds exhibited inhibitory effects in the calcein-AM assay without displaying toxicity. The activity of these compounds was confirmed by their ability to decrease the verapamil-stimulated ATPase activity of P-gp in a subsequent assay. The discovery of these five novel P-gp inhibitors demonstrates the potential of in-silico screening in drug discovery and provides a new stepping point towards future potent P-gp inhibitors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Nucleotídeos , Simulação de Acoplamento Molecular , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Nucleotídeos/metabolismo , Resistencia a Medicamentos Antineoplásicos
10.
J Phys Chem B ; 127(46): 9905-9914, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37948667

RESUMO

The recently developed extended polarizable density embedding (PDE-X) model is evaluated for the spectroscopic properties of organic chromophores solvated in water, including both one- and two-photon absorption properties. The PDE-X embedding model systematically improves vertical excitation energies over the preceding polarizable density embedding model (PDE). PDE-X shows more modest improvements over existing embedding models for oscillator strengths and two-photon absorption cross-sections, which are more sensitive properties. We argue that the origin of these discrepancies is related to the description of polarization effects, suggesting directions for future development of the embedding model.

11.
BBA Adv ; 4: 100102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691996

RESUMO

Natamycin is an antifungal polyene macrolide that is used as a food preservative but also to treat fungal keratitis and other yeast infections. In contrast to other polyene antimycotics, natamycin does not form ion pores in the plasma membrane, but its mode of action is poorly understood. Using nuclear magnetic resonance (NMR) spectroscopy of deuterated sterols, we find that natamycin slows the mobility of ergosterol and cholesterol in liquid-ordered (Lo) membranes to a similar extent. This is supported by molecular dynamics (MD) simulations, which additionally reveal a strong impact of natamycin dimers on sterol dynamics and water permeability. Interference with sterol-dependent lipid packing is also reflected in a natamycin-mediated increase in membrane accessibility for dithionite, particularly in bilayers containing ergosterol. NMR experiments with deuterated sphingomyelin (SM) in sterol-containing membranes reveal that natamycin reduces phase separation and increases lipid exchange in bilayers with ergosterol. In ternary lipid mixtures containing monounsaturated phosphatidylcholine, saturated SM, and either ergosterol or cholesterol, natamycin interferes with phase separation into Lo and liquid-disordered (Ld) domains, as shown by NMR spectroscopy. Employing the intrinsic fluorescence of natamycin in ultraviolet-sensitive microscopy, we can visualize the binding of natamycin to giant unilamellar vesicles (GUVs) and find that it has the highest affinity for the Lo phase in GUVs containing ergosterol. Our results suggest that natamycin specifically interacts with the sterol-induced ordered phase, in which it disrupts lipid packing and increases solvent accessibility. This property is particularly pronounced in ergosterol containing membranes, which could underlie the selective antifungal activity of natamycin.

12.
Chembiochem ; 24(21): e202300490, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581408

RESUMO

Nτ -methylation of His73 in actin by histidine methyltransferase SETD3 plays an important role in stabilising actin filaments in eukaryotes. Mutations in actin and overexpression of SETD3 have been related to human diseases, including cancer. Here, we investigated the importance of Trp79 in ß-actin on productive human SETD3 catalysis. Substitution of Trp79 in ß-actin peptides by its chemically diverse analogues reveals that the hydrophobic Trp79 binding pocket modulates the catalytic activity of SETD3, and that retaining a bulky and hydrophobic amino acid at position 79 is important for efficient His73 methylation by SETD3. Molecular dynamics simulations show that the Trp79 binding pocket of SETD3 is ideally shaped to accommodate large and hydrophobic Trp79, contributing to the favourable release of water molecules upon binding. Our results demonstrate that the distant Trp79 binding site plays an important role in efficient SETD3 catalysis, contributing to the identification of new SETD3 substrates and the development of chemical probes targeting the biomedically important SETD3.


Assuntos
Actinas , Metiltransferases , Humanos , Metiltransferases/metabolismo , Actinas/química , Histona Metiltransferases/química , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histidina/química , Metilação , Catálise
13.
J Phys Chem B ; 127(14): 3248-3256, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37002869

RESUMO

The polarizable density embedding (PDE) model is a focused QM/QM fragment-based embedding model designed to model solvation effects on molecular properties. We extend the PDE model to include exchange and nonadditive exchange-correlation (for DFT) in the embedding potential in addition to the existing electrostatic, polarization, and nonelectrostatic effects already present. The resulting model, termed PDE-X, yields localized electronic excitation energies that accurately capture the range dependence of the solvent interaction and gives close agreement with full quantum mechanical (QM) results, even when using minimal QM regions. We show that the PDE-X embedding description consistently improves the accuracy of excitation energies for a diverse set of organic chromophores. The improved embedding description leads to systematic solvent effects that do not average out when applying configurational sampling.

14.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108167

RESUMO

Histone lysine methacrylation and crotonylation are epigenetic marks that play important roles in human gene regulation. Here, we explore the molecular recognition of histone H3 peptides possessing methacryllysine and crotonyllysine at positions 18 and 9 (H3K18 and H3K9) by the AF9 YEATS domain. Our binding studies demonstrate that the AF9 YEATS domain displays a higher binding affinity for histones possessing crotonyllysine than the isomeric methacryllysine, indicating that AF9 YEATS distinguishes between the two regioisomers. Molecular dynamics simulations reveal that the crotonyllysine/methacryllysine-mediated desolvation of the AF9 YEATS domain provides an important contribution to the recognition of both epigenetic marks. These results provide important knowledge for the development of AF9 YEATS inhibitors, an area of biomedical interest.


Assuntos
Regulação da Expressão Gênica , Histonas , Proteínas Nucleares , Humanos , Histonas/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Proteínas Nucleares/metabolismo
15.
RSC Chem Biol ; 4(3): 235-243, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908702

RESUMO

Non-haem Fe(ii) and 2-oxoglutarate (2OG) dependent oxygenases catalyse oxidation of multiple proteins in organisms ranging from bacteria to humans. We describe studies on the substrate selectivity and inhibition of the human ribosomal oxygenases (ROX) MINA53 and NO66, members of the JmjC 2OG oxygenase subfamily, which catalyse C-3 hydroxylation of histidine residues in Rpl27a and Rpl8, respectively. Assays with natural and unnatural histidine analogues incorporated into Rpl peptides provide evidence that MINA53 and NO66 have narrow substrate selectivities compared to some other human JmjC hydroxylases, including factor inhibiting HIF and JMJD6. Notably, the results of inhibition assays with Rpl peptides containing histidine analogues with acyclic side chains, including Asn, Gln and homoGln, suggest the activities of MINA53/NO66, and by implication related 2OG dependent protein hydroxylases/demethylases, might be regulated in vivo by competition with non-oxidised proteins/peptides. The inhibition results also provide avenues for development of inhibitors selective for MINA53 and NO66.

16.
J Chem Theory Comput ; 18(12): 7384-7393, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36332108

RESUMO

We extend the polarizable density embedding (PDE) model to support the calculation of nuclear magnetic resonance (NMR) shielding constants using gauge-including atomic orbitals (GIAOs) within a density functional theory (DFT) framework. The PDE model divides the total system into fragments, describing some by quantum mechanics (QM) and the others through an embedding model. The PDE model uses anisotropic polarizabilities, inter-fragment two-electron Coulomb integrals, and a non-local repulsion operator to emulate the QM effects. The terms involving Coulomb integrals are straightforwardly extended with GIAOs. In contrast, we consider two approaches to handle the gauge dependency of the non-local operator, employing either simple symmetrization or a gauge transformation. We find the latter approach to be most stable with respect to increasing the basis set size of the QM region. We examine the accuracy of the PDE model for calculating NMR shielding constants on several solutes in a water solution. The performance is compared with the classical polarizable embedding (PE) model in addition to supermolecular reference calculations. Based on these systems, we address the basis set convergence characteristics and the QM region size requirements. Furthermore, we investigate the performance of the PDE model for a system with significant electron spill-out. In many cases, we find that the PDE model outperforms the PE model, especially regarding the accuracy of nuclear shielding constants when using small QM region sizes and in systems with significant electron spill-out.

17.
J Chem Theory Comput ; 18(10): 6231-6239, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131620

RESUMO

The polarizable density embedding model is combined with the multiconfigurational self-consistent field and MC-srDFT electronic structure methods to calculate solvatochromic shifts of the n-π* absorption of acrolein and the π-π* absorption of the para-nitrophenolate anion in aqueous solution. Differences between linear-response (LR) and state-specific (SS) solvent shifts are analyzed by assessing the contributions of different terms in the solvent potential. This comparison shows that the differences are not only due to the intrinsically different response of LR and SS excitation energies to the polarizability of the environment but also due to a different response to the static part of the environment potential. These observations show that even in nonpolarizable environments, LR and SS calculations based on SCF (orbital optimization) methods do not necessarily agree on the spectral shift. The difference can be as large as, or even dominate, the difference due to dynamical polarization.


Assuntos
Teoria Quântica , Água , Acroleína , Solventes/química , Água/química
18.
Biochim Biophys Acta Biomembr ; 1864(11): 184012, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914570

RESUMO

Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.


Assuntos
Natamicina , Proteínas de Saccharomyces cerevisiae , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antibacterianos/metabolismo , Antifúngicos/química , Colesterol/química , Ergosterol/química , Lisina/metabolismo , Natamicina/metabolismo , Natamicina/farmacologia , Polienos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo
19.
Mol Pharm ; 19(7): 2248-2253, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512380

RESUMO

Much effort has been invested in the search for modulators of membrane transport proteins such as P-glycoprotein (P-gp) to improve drug bioavailability and reverse multidrug resistance in cancer. Nonionic surfactants, a class of pharmaceutical excipients, are known to inhibit such proteins, but knowledge about the exact mechanism of this inhibition is scarce. Here, we perform multiscale molecular dynamics simulations of one of these surfactants, polysorbate 20 (PS20), to reveal the behavior of such compounds on the molecular level and thereby discover the molecular mechanism of the P-gp inhibition. We show that the amphiphilic headgroup of PS20 is too hydrophobic to partition in the water phase, which drives the binding of PS20 to the amphiphilic drug-binding domain of P-gp and thereby causes the inhibition of the protein. Based on our findings, we conclude that PS20 primarily inhibits P-gp through direct binding to the drug-binding domain (DBD) from the extracellular leaflet.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Polissorbatos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Excipientes/química , Polissorbatos/química , Tensoativos/química
20.
Org Biomol Chem ; 20(8): 1723-1730, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142326

RESUMO

SETD3-catalysed N3-methylation of His73 in ß-actin plays a key role in stabilisation of actin filaments in the metazoan cells. Overexpression and/or dysregulation of SETD3 is associated with several human pathologies, including cancer. Here, we examined the role of the Ile71 residue in ß-actin on human SETD3 catalysis. Substitution of Ile71 in ß-actin peptides by its natural and unnatural mimics reveals that the 'secondary' Ile71 binding pocket modulates the substrate efficiency of ß-actin. Our enzymatic work demonstrates that human SETD3 can accommodate structurally diverse hydrophobic side chains in its Ile71 binding pocket, providing clear limits of the size and shape of Ile analogues. Water thermodynamics calculations reveal that the Ile71 pocket is occupied by high-energy water molecules, that are released upon the Ile71 binding, contributing favourably to the SETD3-ßA complex formation. The work highlights that the hydrophobic Ile71 binding site plays an essential role in SETD3 catalysis, contributing to an ongoing effort in the design and development of chemical probes targeting SETD3.


Assuntos
Actinas/metabolismo , Histona Metiltransferases/metabolismo , Isoleucina/metabolismo , Actinas/química , Biocatálise , Histidina/química , Histidina/metabolismo , Humanos , Isoleucina/química , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...