Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15255-15267, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38751356

RESUMO

Photoinduced linkage isomers (PLI) of the NO ligand in transition-metal nitrosyl compounds can be identified by vibrational spectroscopy due to the large shifts of the (NO) stretching vibration. We present a detailed experimental and theoretical study of the prototypical compound K2[RuCl5NO], where (NO) shifts by ≈150 cm-1 when going from the N-bound (κN) ground state (GS) to the oxygen-bound (κO) metastable linkage isomer MS1, and by ≈360 cm-1 when going to the side-on (κ2N,O) metastable linkage isomer MS2. We show that the experimentally observed N-O stretching modes of the GS, MS1, and MS2 exhibit strong coupling with the Ru-N and Ru-O stretching modes, which can be decoupled using the local mode vibrational theory formalism. From the resulting decoupled pure two-atomic harmonic oscillators the local force constants are determined, which all follow the same quadratic behavior on the wavenumber. A Bader charge analysis shows that the total charge on the NO ligand is not correlated to the observed frequency shift of (NO).

2.
Proc Natl Acad Sci U S A ; 121(14): e2401982121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536753

RESUMO

Photochemical valence bond isomerization of a crystalline Dewar benzene (DB) diacid monoanion salt with an acetophenone-linked piperazinium cation that serves as an intramolecular triplet energy sensitizer (DB-AcPh-Pz) exhibits a quantum chain reaction with as many as 450 product molecules per photon absorbed (Φ ≈ 450). By contrast, isomorphous crystals of the DB diacid monosalt of an ethylbenzene-linked piperazinium (DB-EtPh-Pz) lacking a triplet sensitizer showed a less impressive quantum yield of ca. Φ ≈ 22. To establish the critical importance of a triplet excited state carrier in the adiabatic photochemical reaction we prepared mixed crystals with DB-AcPh-Pz as a dilute triplet sensitizer guest in crystals of DB-EtPh-Pz. As expected from their high structural similarities, solid solutions were easily formed with the triplet sensitizer salt in the range of 0.1 to 10%. Experiments carried out under conditions where light is absorbed by the triplet sensitizer-linked DB-AcPh-Pz can be used to initiate a triplet state adiabatic reaction from 3DB-AcPh-Pz to 3HB*-AcPh-Pz, which can serve as a chain carrier and transfer energy to an unreacted DB-EtPh-Pz where exciton delocalization in the crystalline solid solution can help carry out an efficient energy transfer and enable a quantum chain employing the photoproduct as a triplet chain carrier. Excitation of mixed crystals with as little as 0.1% triplet sensitizer resulted in an extraordinarily high quantum yield Φ ≈ 517.

3.
Inorg Chem ; 62(14): 5531-5542, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36989116

RESUMO

Photoinduced linkage isomers (PLIs) of the nitro-ligand were generated and comprehensively characterized in a square planar unit [Pd(NH3)3NO2]+ of the complex salts [Pd(NH3)4][Pd(NH3)3NO2][MOx3]·yH2O (M = Cr (Cr), Rh (Rh), Co (Co), Ox = oxalate). Structural (XRD) and spectroscopic (IR, UV-vis) investigations at 10 and 150 K allowed determining the structures of several photoinduced linkage isomers, endo-ONO (PLI1, 2) and exo-ONO (PLI3, 4) isomers generated by irradiation with 365 nm from the initial NO2 (GS), along with the assignment of the infrared (IR) bands to each structural isomer. Based on a combination of these methods, the photo- and thermally induced interplay of PLIs was investigated. Irradiation in the temperature range of 10-80 K induces the formation of both endo- and exo-ONO isomers, while increasing the temperature up to 150 K results in the formation of only endo-ONO isomers. The structural arrangement of the endo-ONO and exo-ONO PLI is strongly influenced by intermolecular interactions due to the partial occupation of a neighboring site by water molecules. The investigation of thermal dynamics of PLIs revealed that the thermal decay of the exo-ONO isomer occurs via two steps exo-ONO → endo-ONO → NO2. The kinetic parameters (Ea, k0) of both decay processes were determined together with the characteristic decay temperatures (Td) by IR spectroscopy. According to the photoinduced dynamics measured by IR spectroscopy, the mechanism of PLI formation in [Pd(NH3)3NO2]+ could be described as NO2 → endo-ONO → exo-ONO.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 3): 321-330, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096513

RESUMO

(S)-(-)-1-Phenylethanaminium 4-(2,4,6-triisopropylbenzoyl)benzoate (S-PEATPBB) undergoes a photochemical reaction in its crystalline form upon UV irradiation and forms three different products: the first product is the result of a Yang cyclization with the participation of the δ-H atom of o-isopropyl (product D) and the second and third products are obtained via a Norrish-Yang reaction with the involvement of the γ-H atom of 2-isopropyl (product P) and 6-isopropyl (product Z). These products are formed in different proportions (D > P >> Z). The path and kinetics of the reaction were monitored step-by-step using crystallographic methods, both under ambient and high-pressure conditions. The reactivity of S-PEATPBB depends strongly on the geometry of the reaction centre and the volume of the reaction cavity. Due to the geometrical preferences making the cyclization reaction easier to proceed, product D dominates over the other products, while the formation of product Z becomes difficult or almost impossible at high pressure. The reaction proceeds with an increase of the unit-cell volume, which, suppressed by high pressure, results in a significant decrease of the reaction rate. The crystal lattice of S-PEATPBB shows high elasticity. The quality of the partially reacted crystal remains the same after decompression from 0.75 GPa to 0.1 MPa.

5.
Materials (Basel) ; 14(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924588

RESUMO

The crystal structure was determined for the first time for 4-[(di-p-tolyl-amino)benzylidene]-(5-pyridin-4-yl-[1,3,4]thiadiazol-2-yl)-imine (trans-PPL9) by X-ray diffraction. The imine crystallized in the monoclinic P21/n space group with a = 18.9567(7) Å, b = 6.18597(17) Å, c = 22.5897(7) Å, and ß = 114.009(4)°. Intermolecular interactions in the PPL9 crystal were only weak C-H⋯N hydrogen bonds investigated using the Hirshfeld surface. The electronic and geometric structure of the imine were investigated by the density functional theory and the time-dependent density-functional theory. The properties of the imine in neutral and protonated form with camforosulphonic acid (CSA) were investigated using cyclic voltammetry, UV-vis and 1H NMR spectroscopy. Theoretical and experimental studies showed that for the 1:1 molar ratio the protonation occured on nitrogen in pyridine in the PPL9 structure, as an effect of Brönsted acid-base interactions. Thermographic camera was used to defined defects in constructed simple devices with ITO/PPL9 (or PPL9:CSA)/Ag/ITO architecture. In conclusion, a thermally stable imine was synthesized in crystalline form and by CSA doping, a modification of absorption spectra together with reduction of overheating process was observed, suggesting its potential application in optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...