Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(2): 1061-1073, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103261

RESUMO

BACKGROUND: Many healthcare institutions have guidelines concerning the usage of protective procedures, and various x-ray shields have been used to reduce unwanted radiation exposure to medical staff and patients when using x-rays. Most x-ray shields are in the form of sheets and lack elasticity, which limits their effectiveness in shielding areas with movement, such as the thyroid. To overcome this limitation, we have developed an innovative elastic x-ray shield. PURPOSE: The purpose of this study is to explain the methodology for developing and evaluating a novel elastic x-ray shield with sufficient x-ray shielding ability. Furthermore, valuable knowledge and evaluation indices are derived to assess our shield's performance. METHODS: Our x-ray shield was developed through a process of embedding Bi2 O3 particles into porous polyurethane. Porous polyurethane with a thickness of 10 mm was dipped into a solution of water, metal particles, and chemical agents. Then, it was air-dried to fix the metal particles in the porous polyurethane. Thirteen investigational x-ray shields were fabricated, in which Bi2 O3 particles at various mass thicknesses (ranging from 585 to 2493 g/m2 ) were embedded. To determine the performance of the shielding material, three criteria were evaluated: (1) Dose Reduction Factor ( D R F $DRF$ ), measured using inverse broad beam geometry; (2) uniformity, evaluated from the standard deviation ( S D $SD$ ) of the x-ray image obtained using a clinical x-ray imaging detector; and (3) elasticity, evaluated by a compression test. RESULTS: The elastic shield with small pores, containing 1200 g/m2 of the metal element (Bi), exhibited a well-balanced performance. The D R F $DRF$ was approximately 80% for 70 kV diagnostic x-rays. This shield's elasticity was -0.62 N/mm, a loss of only 30% when compared to porous polyurethane without metal. Although the non-uniformity of the x-ray shield leads to poor shielding ability, it was found that the decrease in the shielding ability can be limited to a maximum of 6% when the shield is manufactured so that the S D $SD$ of the x-ray image of the shield is less than 10%. CONCLUSIONS: It was verified that an elastic x-ray shield that offers an appropriate reduction in radiation exposure can be produced by embedding Bi2 O3 particles into porous polyurethane. Our findings can lead to the development of novel x-ray shielding products that can reduce the physical and mental stress on users.


Assuntos
Poliuretanos , Tomografia Computadorizada por Raios X , Humanos , Raios X , Porosidade , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
2.
J Med Invest ; 66(1.2): 86-92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31064962

RESUMO

This study aimed to accelerate the segmentation of organs in medical imaging with the revised radial basis function (RBF) network, using a graphics processing unit (GPU). We segmented the lung and liver regions from 250 chest x-ray computed tomography (CT) images and 160 abdominal CT images, respectively, using the revised RBF network. We compared the time taken to segment images and their accuracy between serial processing by a single-core central processing unit (CPU), parallel processing using four CPU cores, and GPU processing. Segmentation times for lung and liver organ regions shortened to 57.80 and 35.35 seconds for CPU parallel processing and 20.16 and 11.02 seconds for GPU processing, compared to 211.03 and 124.21 seconds for CPU serial processing, respectively. The concordance rate of the segmented region to the normal region in slices excluding the upper and lower ends (173 lung and 111 liver slices) was 98% for lung and 96% for liver. The use of CPU parallel processing and GPU shortened the organ segmentation time in the revised RBF network without compromising segmentation accuracy. In particular, segmentation time was shortened to less than 10%with GPU. This processing method will contribute to workload reduction in imaging analysis. J. Med. Invest. 66 : 86-92, February, 2019.


Assuntos
Gráficos por Computador , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos
3.
Interact J Med Res ; 1(2): e2, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23611759

RESUMO

BACKGROUND: Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. OBJECTIVE: To determine the educational effectiveness of interactive 3DCG. METHODS: We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). RESULTS: Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. CONCLUSIONS: Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...