Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(31): 19261-72, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26078454

RESUMO

Bacillus subtilis is intensively studied as a model organism for the development of bacterial biofilms or pellicles. A key component is currently undefined exopolysaccharides produced from proteins encoded by genes within the eps locus. Within this locus are four genes, epsHIJK, known to be essential for pellicle formation. We show they encode proteins synthesizing the broadly expressed microbial carbohydrate poly-N-acetylglucosamine (PNAG). PNAG was present in both pellicle and planktonic wild-type B. subtilis cells and in strains with deletions in the epsA-G and -L-O genes but not in strains deleted for epsH-K. Cloning of the B. subtilis epsH-K genes into Escherichia coli with in-frame deletions in the PNAG biosynthetic genes pgaA-D, respectively, restored PNAG production in E. coli. Cloning the entire B. subtilis epsHIJK locus into pga-deleted E. coli, Klebsiella pneumoniae, or alginate-negative Pseudomonas aeruginosa restored or conferred PNAG production. Bioinformatic and structural predictions of the EpsHIJK proteins suggest EpsH and EpsJ are glycosyltransferases (GT) with a GT-A fold; EpsI is a GT with a GT-B fold, and EpsK is an α-helical membrane transporter. B. subtilis, E. coli, and pga-deleted E. coli carrying the epsHIJK genes on a plasmid were all susceptible to opsonic killing by antibodies to PNAG. The immunochemical and genetic data identify the genes and proteins used by B. subtilis to produce PNAG as a significant carbohydrate factor essential for pellicle formation.


Assuntos
Acetilglucosamina/fisiologia , Bacillus subtilis/fisiologia , Biofilmes , Acetilglucosamina/química , Anticorpos Antibacterianos/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Vias Biossintéticas , Escherichia coli , Células HL-60 , Humanos , Modelos Moleculares , Proteínas Opsonizantes/fisiologia , Fagocitose , Polissacarídeos Bacterianos , Estrutura Terciária de Proteína
2.
J Bacteriol ; 195(18): 4085-93, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836866

RESUMO

Natural competence is a process by which bacteria construct a membrane-associated machine for the uptake and integration of exogenous DNA. Many bacteria harbor genes for the DNA uptake machinery and yet are recalcitrant to DNA uptake for unknown reasons. For example, domesticated laboratory strains of Bacillus subtilis are renowned for high-frequency natural transformation, but the ancestral B. subtilis strain NCIB3610 is poorly competent. Here we find that endogenous plasmid pBS32 encodes a small protein, ComI, that inhibits transformation in the 3610 strain. ComI is a single-pass trans-membrane protein that appears to functionally inhibit the competence DNA uptake machinery. Functional inhibition of transformation may be common, and abolishing such inhibitors could be the key to permitting convenient genetic manipulation of a variety of industrially and medically relevant bacteria.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/farmacologia , Competência de Transformação por DNA/efeitos dos fármacos , Proteínas de Membrana/farmacologia , Plasmídeos/genética , Transformação Bacteriana , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Reação em Cadeia da Polimerase , Transformação Bacteriana/efeitos dos fármacos
3.
J Bacteriol ; 195(10): 2437-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23524609

RESUMO

Bacillus subtilis biofilm formation is tightly regulated by elaborate signaling pathways. In contrast to domesticated lab strains of B. subtilis which form smooth, essentially featureless colonies, undomesticated strains such as NCIB 3610 form architecturally complex biofilms. NCIB 3610 also contains an 80-kb plasmid absent from laboratory strains, and mutations in a plasmid-encoded homolog of a Rap protein, RapP, caused a hyperrugose biofilm phenotype. Here we explored the role of rapP phrP in biofilm formation. We found that RapP is a phosphatase that dephosphorylates the intermediate response regulator Spo0F. RapP appears to employ a catalytic glutamate to dephosphorylate the Spo0F aspartyl phosphate, and the implications of the RapP catalytic glutamate are discussed. In addition to regulating B. subtilis biofilm formation, we found that RapP regulates sporulation and genetic competence as a result of its ability to dephosphorylate Spo0F. Interestingly, while rap phr gene cassettes routinely form regulatory pairs; i.e., the mature phr gene product inhibits the activity of the rap gene product, the phrP gene product did not inhibit RapP activity in our assays. RapP activity was, however, inhibited by PhrH in vivo but not in vitro. Additional genetic analysis suggests that RapP is directly inhibited by peptide binding. We speculate that PhrH could be subject to posttranslational modification in vivo and directly inhibit RapP activity or, more likely, PhrH upregulates the expression of a peptide that, in turn, directly binds to RapP and inhibits its Spo0F phosphatase activity.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Monoéster Fosfórico Hidrolases/metabolismo , Plasmídeos/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Modelos Biológicos , Monoéster Fosfórico Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...