Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(29): 12738-12749, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477624

RESUMO

An electroplating-anodising method based on a facile and scalable electrochemical process was used to fabricate manganese ferrite porous oxide films for use as precious-metal-free oxygen reduction/evolution reaction (ORR/OER) electrodes. Porous oxide films of spinel manganese ferrites (MnxFe3-xO4) were formed on electroplated Fe-Mn films. The MnxFe3-xO4 porous oxide formed on microcracks in the Fe-Mn films constituted a nanoporous/microcrack hierarchical structure (NP/MC), which provided a large electrode surface area for ORR/OER. The electrochemically active surface area of the NP/MC on Fe-36 at% Mn was 33.3 cm2, which is nine times that of the nanoporous structure on Fe (3.67 cm2). The onset potential of the NP/MC on Fe-15 at% Mn and Fe-36 at% Mn was 0.88 V vs. RHE (overpotential, ∼350 mV) for the ORR at -0.1 mA cm-2. The OER onset potentials at 10 mA cm-2 were 1.79 V on Fe-15 at% Mn (∼560 mV) and 1.74 V on Fe-36 at% Mn (∼510 mV). The OER and ORR activities of the MnxFe3-xO4 porous oxides are better than those of spinel iron oxide (∼510 and ∼640 mV for the ORR and OER, respectively) because of the good intrinsic activity of MnxFe3-xO4 and greater surface area of the NP/MC. The ORR activities of the MnxFe3-xO4 porous oxides decreased to about 30% during ORR durability testing for 7.5 h, and the same level of activity was retained after 24 h of use. The MnxFe3-xO4 porous oxides retained a high level of activity during OER durability testing for 8 h.

2.
Faraday Discuss ; 180: 479-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25893229

RESUMO

Conducting polymers (CPs), including polypyrrole, have attracted attention for their potential in the protection of metals against corrosion; however, CP coatings have the limitation of poor adhesion to metal substrates. In this study, a composite coating, comprising a self-organized porous anodic oxide layer and a polypyrrole layer, has been developed on iron. Because of electropolymerization in the pores of the anodic oxide layer, the composite coating showed improved adhesion to the substrate along with prolonged corrosion protection in a NaCl aqueous corrosive environment. The anodic oxide layers are formed in a fluoride-containing organic electrolyte and contain a large amount of fluoride species. The removal of these fluoride species from the oxide layer and the metal/oxide interface region is crucial for improving the corrosion protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...