Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 192(7): 3239-46, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24600031

RESUMO

The common marmoset (Callithrix jacchus) is a New World monkey that is used frequently as a model for various human diseases. However, detailed knowledge about the MHC is still lacking. In this study, we sequenced and annotated a total of 854 kb of the common marmoset MHC region that corresponds to the HLA-A/G/F segment (Caja-G/F) between the Caja-G1 and RNF39 genes. The sequenced region contains 19 MHC class I genes, of which 14 are of the MHC-G (Caja-G) type, and 5 are of the MHC-F (Caja-F) type. Six putatively functional Caja-G and Caja-F genes (Caja-G1, Caja-G3, Caja-G7, Caja-G12, Caja-G13, and Caja-F4), 13 pseudogenes related either to Caja-G or Caja-F, three non-MHC genes (ZNRD1, PPPIR11, and RNF39), two miscRNA genes (ZNRD1-AS1 and HCG8), and one non-MHC pseudogene (ETF1P1) were identified. Phylogenetic analysis suggests segmental duplications of units consisting of basically five (four Caja-G and one Caja-F) MHC class I genes, with subsequent expansion/deletion of genes. A similar genomic organization of the Caja-G/F segment has not been observed in catarrhine primates, indicating that this genomic segment was formed in New World monkeys after the split of New World and Old World monkeys.


Assuntos
Callithrix/imunologia , Genoma/imunologia , Genômica/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Sequência de Aminoácidos , Animais , Callithrix/genética , Cromossomos Artificiais Bacterianos/genética , Mapeamento de Sequências Contíguas , Ordem dos Genes , Genoma/genética , Biblioteca Genômica , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , Pseudogenes/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
2.
Biomed Res Int ; 2013: 147064, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24089661

RESUMO

Hexanchiformes is regarded as a monophyletic taxon, but the morphological and genetic relationships between the five extant species within the order are still uncertain. In this study, we determined the whole mitochondrial DNA (mtDNA) sequences of seven sharks including representatives of the five Hexanchiformes, one squaliform, and one carcharhiniform and inferred the phylogenetic relationships among those species and 12 other Chondrichthyes (cartilaginous fishes) species for which the complete mitogenome is available. The monophyly of Hexanchiformes and its close relation with all other Squaliformes sharks were strongly supported by likelihood and Bayesian phylogenetic analysis of 13,749 aligned nucleotides of 13 protein coding genes and two rRNA genes that were derived from the whole mDNA sequences of the 19 species. The phylogeny suggested that Hexanchiformes is in the superorder Squalomorphi, Chlamydoselachus anguineus (frilled shark) is the sister species to all other Hexanchiformes, and the relations within Hexanchiformes are well resolved as Chlamydoselachus, (Notorynchus, (Heptranchias, (Hexanchus griseus, H. nakamurai))). Based on our phylogeny, we discussed evolutionary scenarios of the jaw suspension mechanism and gill slit numbers that are significant features in the sharks.


Assuntos
Evolução Biológica , DNA Mitocondrial/genética , Filogenia , Tubarões/genética , Animais , Genoma Mitocondrial/genética , Brânquias/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Arcada Osseodentária/fisiologia
3.
Int Immunol ; 24(9): 593-603, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22836021

RESUMO

Mast cells (MCs) are developed from hematopoietic progenitor cells and play an important role in inflammation. Study of the kinetics of development and accumulation of primate MC in vivo is crucial for the control of human inflammatory diseases, as evolution of the immune system is quite rapid and inflammation including MC response is considered to be different between mouse and human. In the present study, we examined the development of MC from hematopoietic progenitors of Callithrix jacchus (common marmoset), an experimental animal of nonhuman primates. Bone marrow cells were fractionated for the expression of CD34 and CD117 by cell sorting. MCs were developed in vitro or by transplanting the cells to NOD/SCID/IL-2γc knockout (NOG) mice. In vitro culture of CD34(+)CD117(+) (double positive, DP) cells with stem cell factor could generate high-affinity Fc epsilon receptor (FcεR)-expressing CD117(+) cells with typical granules. The developed MC released ß-hexosaminidase and produced leukotriene C(4) after the stimulation of FcεRI. Transplantation of DP cells gave rise to a marked expansion of CD34(-)CD45(+)CD117(+)FcεR(+) cells in NOG mice. They expressed transcripts encoding chymase 1 and tryptase ß. Differentiation of CD34(-)CD117(+) cells to MCs was relatively limited compared with the DP cells, similarly to human MCs. These results suggest that this marmoset system provides a good model for human MC development.


Assuntos
Biomarcadores/metabolismo , Células da Medula Óssea/imunologia , Callithrix/imunologia , Mastócitos/imunologia , Células-Tronco/imunologia , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Mastócitos/transplante , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Modelos Animais , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de IgE/metabolismo
4.
Immunogenetics ; 63(8): 485-99, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21505866

RESUMO

Common marmoset monkeys (Callithrix jacchus) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex (MHC) region. However, the genomic information of the marmoset MHC (Caja) is still lacking. The MHC-B/C segment represents the most diverse MHC region among primates. Therefore, in this paper, to elucidate the detailed gene organization and evolutionary processes of the Caja class I B (Caja-B) segment, we determined two parts of the Caja-B sequences with 1,079 kb in total, ranging from H6orf15 to BAT1 and compared the structure and phylogeny with that of other primates. This segment contains 54 genes in total, nine Caja-B genes (Caja-B1 to Caja-B9), two MIC genes (MIC1 and MIC2), eight non-MHC genes, two non-coding genes, and 33 non-MHC pseudogenes that have not been observed in other primate MHC-B/C segments. Caja-B3, Caja-B4, and Caja-B7 encode proper MHC class I proteins according to amino acid structural characteristics. Phylogenetic relationships based on 48 MHC-I nucleotide sequences in primates suggested (1) species-specific divergence for Caja, Mamu, and HLA/Patr/Gogo lineages, (2) independent generation of the "seven coding exon" type MHC-B genes in Mamu and HLA/Patr/Gogo lineages from an ancestral "eight coding exon" type MHC-I gene, (3) parallel correlation with the long and short segmental duplication unit length in Caja and Mamu lineages. These findings indicate that the MHC-B/C segment has been under permanent selective pressure in the evolution of primates.


Assuntos
Callithrix/genética , Genoma , Antígenos de Histocompatibilidade Classe I/genética , Animais , Sequência de Bases , Evolução Molecular , Éxons , Humanos , Masculino , Filogenia
5.
J Immunol ; 186(5): 2990-7, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21270408

RESUMO

Leukocyte Ig-like receptors (LILRs) are a family of innate immune receptors predominantly expressed by myeloid cells that can alter the Ag presentation properties of macrophages and dendritic cells. Several LILRs bind HLA class I. Altered LILR recognition due to HLA allelic variation could be a contributing factor in disease. We comprehensively assessed LILR binding to >90 HLA class I alleles. The inhibitory receptors LILRB1 and LILRB2 varied in their level of binding to different HLA alleles, correlating in some cases with specific amino acid motifs. LILRB2 displayed the weakest binding to HLA-B*2705, an allele genetically associated with several autoimmune conditions and delayed progression of HIV infection. We also assessed the effect of HLA class I conformation on LILR binding. LILRB1 exclusively bound folded ß(2)-microglobulin-associated class I, whereas LILRB2 bound both folded and free H chain forms. In contrast, the activating receptor LILRA1 and the soluble LILRA3 protein displayed a preference for binding to HLA-C free H chain. To our knowledge, this is the first study to identify the ligand of LILRA3. These findings support the hypothesis that LILR-mediated detection of unfolded versus folded MHC modulates immune responses during infection or inflammation.


Assuntos
Alelos , Genes MHC Classe I/imunologia , Antígenos HLA/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Motivos de Aminoácidos/imunologia , Sequência de Aminoácidos , Células HEK293 , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Células Mieloides/imunologia , Células Mieloides/metabolismo , Ligação Proteica/genética , Ligação Proteica/imunologia , Conformação Proteica , Dobramento de Proteína , Receptores Imunológicos/genética , Microglobulina beta-2/deficiência , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
6.
IUBMB Life ; 61(12): 1123-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19946892

RESUMO

Uncoupling proteins (UCPs) belong to a family of mitochondrial carrier proteins that are present in the mitochondrial inner membrane. Genetic and experimental studies have shown that UCP dysfunction can be involved in metabolic disorders and in obesity. Uncoupling protein-1 (UCP1; also known as thermogenin) was identified in 1988 and found to be highly expressed in brown adipose tissue. UCP1 allows the leak of protons in respiring mitochondria, dissipating the energy as heat; the enzyme has an important role in nonshivering heat production induced by cold exposure or food intake. In 1997, two homologs of UCP1 were identified and named UCP2 and UCP3. These novel proteins also lower mitochondrial membrane potential, but whether they can dissipate metabolic energy as heat as efficiently as UCP1 is open to dispute. Even after a decade of study, the physiological roles of these novel proteins have still not been completely elucidated. This review aims to shed light on the nutritional and hormonal regulation of UCP2 and on its physiological roles.


Assuntos
Canais Iônicos/sangue , Proteínas Mitocondriais/sangue , Tecido Adiposo/metabolismo , Sítio Alostérico , Animais , Metabolismo Energético , Ácidos Graxos/química , Marcação de Genes , Glutamina/química , Hormônios/metabolismo , Humanos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial , Ciências da Nutrição , Fases de Leitura Aberta , Transcrição Gênica , Proteína Desacopladora 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...