Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Eur J Orthod ; 46(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847809

RESUMO

BACKGROUND: Masticatory activity affects the morphology of the maxillo-mandibular complex, however, its influence on the cranial base remains to be elucidated. The recent integration of quantitative morphometric analysis with 3D imaging enabled a comprehensive and high-resolution morphological characterization of the craniofacial complex. We aimed to investigate the influence of masticatory activity on the morphology of the growing cranial base by three-dimensional (3D) geometric morphometric approach using micro-CT. METHODS: The micro-CT data was reanalyzed to illustrate the 3D shape of the cranial base, and wireframe models were generated by connecting landmarks on the images. In the original study, mice were fed a soft diet (SD) of powdered pellets or a conventional hard diet (HD) for 6 weeks from 3 to 9 weeks of age, immediately after weaning. A principal component (PC) analysis analyzed shape variations and assessed their significance, while canonical variate (CV) analysis facilitated the comparison and differentiation of groups based on shape, unveiling meaningful shape distinctions. RESULTS: Three PCs were extracted that significantly separated the SD and HD groups among those explaining variations in shape. These PCs were related to the length of the sphenoid bone, the width of the anterior part of the sphenoid bone, and the length of the cranial base. Furthermore, one CV effectively distinguished SD from HD, and CV analysis showed that the sphenoid was shortened in the length and narrowed at the border of the temporal bone in SD mice. CONCLUSIONS: Masticatory loading affects the skeletal development of the cranial base. The morphology of the sphenoid bone was affected in both the sagittal and transverse axes.


Assuntos
Mandíbula , Base do Crânio , Camundongos , Animais , Base do Crânio/diagnóstico por imagem , Mandíbula/diagnóstico por imagem , Microtomografia por Raio-X , Dieta , Imageamento Tridimensional
2.
Orthod Craniofac Res ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059557

RESUMO

OBJECTIVE: The objective of the study was to elucidate the association between cranial base (Bjork-Jarabak analysis), midsagittal cross-sectional area of the airway in the pharyngeal region (MCSA-PR) data and pharyngeal-airway volume (PAV) and develop a model that could help clinicians predict PAV using two-dimensional (2D) data (Bjork polygon and MCSA-PR). MATERIALS AND METHODS: Pre-treatment lateral cephalometric radiographs and magnetic resonance imaging (MRI) scans of 82 women were categorized into three anteroposterior skeletal groups based on ANB angle: Class I (n = 29), 1.5° ≤ ANB≤5.1°; Class II (n = 26), ANB >5.1°; Class III (n = 27), ANB <1.5°. The Bjork polygon, MCSA-PR data from cephalograms and PAV data from MRI scans were examined. Intergroup comparisons were performed using the Kruskal-Wallis test and one-way analysis of variance (ANOVA), with pairwise comparisons conducted using the Bonferroni-corrected Mann-Whitney U-test for the Kruskal-Wallis test and Bonferroni-corrected multiple comparison test for one-way ANOVA. Forward multiple linear regression was used to create model equations for predicting PAV. RESULTS: MCSA-PR and anterior (N-S) and posterior (S-Ar) cranial-base lengths were positively correlated with the PAV. We developed four models; three operated at the group level, and one encompassed the entire sample. Notably, all models could effectively explain the variance in the PAV data. The model for the Class I group was the strongest (adjusted R2 = 0.77). CONCLUSION: Our findings indicate the remarkable potential of the MCSA-PR, N-S and Bjork sum angles (BSA) as predictors of the PAV and the relevance of 2D cephalometric and cranial-base parameters in predicting the three-dimensional (3D) pharyngeal-airway size.

3.
Eur J Orthod ; 42(5): 509-516, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32346737

RESUMO

BACKGROUND AND OBJECTIVES: The masticatory force affects craniofacial development. We aimed to quantify the topological deviation of the growing craniofacial structure due to soft-food diet feeding and to map the region where the phenotypes appeared on three-dimensional (3D) images. MATERIAL AND METHODS: Mice were fed a powdered soft diet (SD) or conventional hard diet (HD) of regular rodent pellets at 3 weeks of age until 9 weeks of age. The heads, excluding the mandibles, were scanned by micro-computed tomography. The topographic deviation of the bony surface was quantitatively assessed by a wire mesh fitting analysis. The actual displacement and significant differences were mapped and visualized in each x-, y-, and z-axis on the 3D craniofacial image. On these reconstructed images, two-dimensional linear measurements between the landmark points confirmed the 3D skeletal displacement. RESULTS: In the transverse direction, the zygomatic arches and the region in which the temporal muscle attaches to the parietal and temporal bones were narrow in the SD group. The temporal muscle attachment regions significantly shifted anteriorly, and consequently, the sagittal zygomatic arch shortened. Although the cranial sagittal length was not affected, the vertical height was also reduced in the SD group compared to the HD group. CONCLUSIONS: Our 3D surface-based analysis demonstrated that SD feeding resulted in reduced 3D bony development at the region where the chewing muscles attach to the zygomatic arches and the temporal and parietal bones. Interestingly, SD feeding induced an anterior shift in the temporal and parietal bone regions, which can affect the skeletal inter-jaw relationship.


Assuntos
Mastigação , Zigoma , Animais , Dieta , Imageamento Tridimensional , Mandíbula , Camundongos , Microtomografia por Raio-X , Zigoma/diagnóstico por imagem
4.
Front Physiol ; 8: 567, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855872

RESUMO

Craniofacial morphology varies among individuals, which is regulated by the interaction between genes and the environment. Soft-diet feeding is a widely-used experimental model for studying the association between the skeletal morphology and muscle-related loading on the bone. Traditionally, these studies have been based on linear and angular measurements provided on two-dimensional (2D) radiographs in the lateral view. However, 2D observation is based on simplification of the anatomical structures and cannot detect three-dimensional (3D) changes in detail. In this study, we newly developed a modified surface-based analysis with micro-3D computed tomography (CT) to examine and detect the 3D changes in the mandible associated with soft-diet feeding. Mice at 3 weeks of age were fed a powdered soft-diet (SD) or hard-diet (HD) of regular rodent pellets until 9 weeks of age. Micro-CT images were taken at age 9 weeks to reconstruct the anatomical architecture images. A computer-generated averaged mandible was superimposed to directly visualize the morphological phenotypes. Gross observation revealed the apparent changes at the posterior body of the mandible, the angular process and the condyle between HD and SD mice. Significant differences in the mapping indicated the regions of significant displacement in the SD mice over the averaged 3D image of the HD mice. This map revealed that vertical displacement was most evident in 3D changes. We also noted a combination of vertical, transverse and anteroposterior directions of displacement in the condylar growth, resulting in complicated shape changes in the whole condylar process in SD mice. In contrast, transverse displacement was more significant in the coronoid process. The map analysis further showed the significant outward displacement of the inner surface of the alveolar process, which consequently resulted in thinning of the alveolar process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...