Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(5): e1010178, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511794

RESUMO

Animals integrate changes in external and internal environments to generate behavior. While neural circuits detecting external cues have been mapped, less is known about how internal states like hunger are integrated into behavioral outputs. Here, we use the nematode C. elegans to examine how changes in internal nutritional status affect chemosensory behaviors. We show that acute food deprivation leads to a reversible decline in repellent, but not attractant, sensitivity. This behavioral change requires two conserved transcription factors MML-1 (MondoA) and HLH-30 (TFEB), both of which translocate from the intestinal nuclei to the cytoplasm during food deprivation. Next, we identify the insulin-like peptide INS-31 as a candidate ligand relaying food-status signals from the intestine to other tissues. Further, we show that neurons likely use the DAF-2 insulin receptor and AGE-1/PI-3 Kinase, but not DAF-16/FOXO to integrate these intestine-released peptides. Altogether, our study shows how internal food status signals are integrated by transcription factors and intestine-neuron signaling to generate flexible behaviors via the gut-brain axis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead , Insulina , Intestinos , Assunção de Riscos , Fatores de Transcrição/genética
2.
PLoS Genet ; 13(6): e1006844, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28636662

RESUMO

Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.


Assuntos
Caenorhabditis elegans/genética , Proteínas Serina-Treonina Quinases/genética , Sinapses/genética , Vesículas Sinápticas/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Dineínas/genética , Neurônios GABAérgicos/metabolismo , Cinesinas/genética , Larva/genética , Larva/crescimento & desenvolvimento , Microtúbulos/genética , Microtúbulos/metabolismo , Plasticidade Neuronal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/genética , Transdução de Sinais , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...