Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 130(9): 1463-1476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438589

RESUMO

BACKGROUND: Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS: We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS: TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION: These findings suggest inhibiting Gal3 may benefit USC patients.


Assuntos
Proteínas Sanguíneas , Cistadenocarcinoma Seroso , Galectina 3 , Neoplasias Uterinas , Humanos , Feminino , Neoplasias Uterinas/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Prognóstico , Animais , Camundongos , Galectinas/genética , Galectinas/metabolismo , Movimento Celular
2.
J Am Chem Soc ; 144(47): 21576-21586, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383954

RESUMO

Super-selective multivalent ligand-receptor interactions display a signature step-like onset in binding when meeting a characteristic density of target receptors. Materials engineered for super-selective binding generally display a high number of flexible ligands to enhance the systems' avidity. In many biological processes, however, ligands are present in moderate copy numbers and arranged in spatio-temporal patterns. In this low-valency regime, the rigidity of the ligand-presenting architecture plays a critical role in the selectivity of the multivalent complex through decrease of the entropic penalty of binding. Exploiting the precision in spatial design inherent to the DNA nanotechnology, we engineered a library of rigid architectures to explore how valency, affinity, and nano-spacing control the presence of super-selectivity in multivalent binding. A micromolar monovalent affinity was required for super-selective binding to be observed within low-valency systems, and the transition point for stable interactions was measured at hexavalent ligand presentation, setting the limits of the low-valency regime. Super-selective binding was observed for all hexavalent architectures, and, more strikingly, the ligand pattern determined the selectivity onset. Hereby, we demonstrate for the first time that nano-control of geometric patterns can be used to discriminate between receptor densities in a super-selective manner. Materials that were indistinguishable in their molecular composition and ligand valency bound with various efficacies on surfaces with constant receptor densities. We define this new phenomenon in super-selective binding as multivalent pattern recognition.


Assuntos
DNA , Nanotecnologia , Ligantes
3.
Front Immunol ; 12: 663379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936101

RESUMO

Immunotherapy for ovarian cancer is an area of intense investigation since the majority of women with relapsed disease develop resistance to conventional cytotoxic therapy. The paucity of safe and validated target antigens has limited the development of clinically relevant antibody-based immunotherapeutics for this disease. Although MUC16 expression is almost universal in High Grade Serous Ovarian Cancers, engagement of the shed circulating MUC16 antigen (CA-125) presents a theoretical risk of systemic activation and toxicity. We designed and evaluated a series of bispecific tandem single-chain variable fragments specific to the retained portion of human MUC16 ectodomain (MUC16ecto) and human CD3. These MUC16ecto- BiTEDs retain binding in the presence of soluble MUC16 (CA-125) and show cytotoxicity against a panel of ovarian cancer cells in vitro. MUC16ecto- BiTEDs delay tumor progression in vivo and significantly prolong survival in a xenograft model of ovarian peritoneal carcinomatosis. This effect was significantly enhanced by antiangiogenic (anti-VEGF) therapy and immune checkpoint inhibition (anti-PD1). However, the combination of BiTEDs with anti-VEGF was superior to combination with anti-PD1, based on findings of decreased peritoneal tumor burden and ascites with the former. This study shows the feasibility and efficacy of MUC16ecto- specific BiTEDs and provides a basis for the combination with anti-VEGF therapy for ovarian cancer.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Hormonais/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Hormonais/uso terapêutico , Antígeno Ca-125/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Neoplasias Ovarianas , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Methods Mol Biol ; 2056: 137-150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31586346

RESUMO

Expansions of simple trinucleotide repeats, such as (CGG)n, (CAG)n or (GAA)n, are responsible for more than 40 hereditary disorders in humans including fragile X syndrome, Huntington's disease, myotonic dystrophy, and Friedreich's ataxia. While the mechanisms of repeat expansions were intensively studied for over two decades, the final picture has yet to emerge. It was important, therefore, to develop a mammalian experimental system for studying repeat instability, which would recapitulate repeat instability observed in human pedigrees. Here, we describe a genetically tractable experimental system to study the instability of (CGG)n repeats in cultured mammalian cells (Kononenko et al., Nat Struct Mol Biol 25:669-676, 2018). It is based on a selectable cassette carrying the HyTK gene under the control of the FMR1 promoter with carrier-size (CGG)n repeats in its 5' UTR, which was integrated into the unique RL5 site in murine erythroid leukemia cells. Expansions of these repeats and/or repeat-induced mutagenesis shut down the reporter, which results in the accumulation of ganciclovir-resistance cells. This system is useful for understanding the genetic controls of repeat instability in mammalian cells. In the long run, it can be adjusted to screen for drugs that either alleviate repeat expansions or reactivate the FMR1 promoter.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Instabilidade Genômica , Repetições de Trinucleotídeos , Regiões 5' não Traduzidas , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Regiões Promotoras Genéticas
5.
Nat Struct Mol Biol ; 25(8): 669-676, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30061600

RESUMO

We developed an experimental system for studying genome instability caused by fragile X (CGG)n repeats in mammalian cells. Our method uses a selectable cassette carrying the HyTK gene under the control of the FMR1 promoter with (CGG)n repeats in its 5' UTR, which is integrated into the unique RL5 site in murine erythroid leukemia cells. Carrier-size (CGG)n repeats markedly elevated the frequency of reporter inactivation, making cells ganciclovir resistant. These resistant clones had a unique mutational signature: a change in repeat length concurrent with mutagenesis in the reporter gene. Inactivation of genes implicated in break-induced replication, including Pold3, Pold4, Rad52, Rad51, and Smarcal1, reduced the frequency of ganciclovir-resistant clones to the baseline level that was observed in the absence of (CGG)n repeats. We propose that replication fork collapse at carrier-size (CGG)n repeats can trigger break-induced replication, which results in simultaneous repeat length changes and mutagenesis at a distance.


Assuntos
Instabilidade Genômica , Mamíferos/genética , Repetições de Trinucleotídeos , Animais , Células Cultivadas , Replicação do DNA , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Camundongos , Mutação , Regiões Promotoras Genéticas
6.
Nucleic Acids Res ; 43(9): e57, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25712097

RESUMO

Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by virus-based vectors. The recently developed alphoid(tetO)-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of chromatin modifiers, tTA or tTS, to its centromeric tetO sequences. This provides a unique control for phenotypes induced by genes loaded into the HAC. The alphoid(tetO)-HAC elimination is highly efficient when a high level of chromatin modifiers as tetR fusion proteins is achieved following transfection of cells by a retrovirus vector. However, such vectors are potentially mutagenic and might want to be avoided under some circumstances. Here, we describe a novel system that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. We demonstrated that a single copy of tTA(VP64) carrying four tandem repeats of the VP16 domain constitutively expressed from the HAC is capable to generate chromatin changes in the HAC kinetochore that are not compatible with its function. To adopt the alphoid(tetO)-HAC for routine gene function studies, we constructed a new TAR-BRV- tTA(VP64) cloning vector that allows a selective isolation of a gene of interest from genomic DNA in yeast followed by its direct transfer to bacterial cells and subsequent loading into the loxP site of the alphoid(tetO)-HAC in hamster CHO cells from where the HAC may be MMCT-transferred to the recipient human cells.


Assuntos
Cromossomos Artificiais Humanos , Vetores Genéticos , Animais , Células CHO , Linhagem Celular Tumoral , Cromatina/metabolismo , Cricetinae , Cricetulus , Expressão Gênica , Humanos , Cinetocoros/metabolismo , Fenótipo , Transativadores/genética
7.
Methods Mol Biol ; 1227: 3-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25239739

RESUMO

Transformation-associated recombination (TAR) cloning allows selective isolation of full-length genes and genomic loci as large circular Yeast Artificial Chromosomes (YACs) in yeast. The method has a broad application for structural and functional genomics, long-range haplotyping, characterization of chromosomal rearrangements, and evolutionary studies. In this paper, we describe a basic protocol for gene isolation by TAR as well as a method to convert TAR isolates into Bacterial Artificial Chromosomes (BACs) using a retrofitting vector. The retrofitting vector contains a 3' HPRT-loxP cassette to allow subsequent gene loading into a unique loxP site of the HAC-based (Human Artificial Chromosome) gene delivery vector. The benefit of combining the TAR gene cloning technology with the HAC gene delivery system for gene expression studies is discussed.


Assuntos
Clonagem Molecular/métodos , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Esferoplastos/genética , Animais , Células CHO , Cromossomos Artificiais Bacterianos/química , Cromossomos Artificiais Bacterianos/metabolismo , Cromossomos Artificiais Humanos/química , Cromossomos Artificiais Humanos/metabolismo , Cromossomos Artificiais de Levedura/química , Cromossomos Artificiais de Levedura/metabolismo , Cricetulus , DNA Fúngico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Esferoplastos/metabolismo , Transformação Genética
8.
Nucleic Acids Res ; 42(21)2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260588

RESUMO

BRCA1 is involved in many disparate cellular functions, including DNA damage repair, cell-cycle checkpoint activation, gene transcriptional regulation, DNA replication, centrosome function and others. The majority of evidence strongly favors the maintenance of genomic integrity as a principal tumor suppressor activity of BRCA1. At the same time some functional aspects of BRCA1 are not fully understood. Here, a HAC (human artificial chromosome) module with a regulated centromere was constructed for delivery and expression of the 90 kb genomic copy of the BRCA1 gene into BRCA1-deficient human cells. A battery of functional tests was carried out to demonstrate functionality of the exogenous BRCA1. In separate experiments, we investigated the role of BRCA1 in maintenance of heterochromatin integrity within a human functional kinetochore. We demonstrated that BRCA1 deficiency results in a specific activation of transcription of higher-order alpha-satellite repeats (HORs) assembled into heterochromatin domains flanking the kinetochore. At the same time no detectable elevation of transcription was observed within HORs assembled into centrochromatin domains. Thus, we demonstrated a link between BRCA1 deficiency and kinetochore dysfunction and extended previous observations that BRCA1 is required to silence transcription in heterochromatin in specific genomic loci. This supports the hypothesis that epigenetic alterations of the kinetochore initiated in the absence of BRCA1 may contribute to cellular transformation.


Assuntos
Proteína BRCA1/metabolismo , Cromossomos Artificiais Humanos , Genes BRCA1 , Animais , Proteína BRCA1/fisiologia , Células CHO , Linhagem Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Heterocromatina/metabolismo , Humanos , Cinetocoros/metabolismo , Suínos
9.
Cell Mol Life Sci ; 70(19): 3723-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23677492

RESUMO

Human artificial chromosomes (HACs) are vectors that offer advantages of capacity and stability for gene delivery and expression. Several studies have even demonstrated their use for gene complementation in gene-deficient recipient cell lines and animal transgenesis. Recently, we constructed an advance HAC-based vector, alphoid(tetO)-HAC, with a conditional centromere. In this HAC, a gene-loading site was inserted into a centrochromatin domain critical for kinetochore assembly and maintenance. While by definition this domain is permissive for transcription, there have been no long-term studies on transgene expression within centrochromatin. In this study, we compared the effects of three chromatin insulators, cHS4, gamma-satellite DNA, and tDNA, on the expression of an EGFP transgene inserted into the alphoid(tetO)-HAC vector. Insulator function was essential for stable expression of the transgene in centrochromatin. In two analyzed host cell lines, a tDNA insulator composed of two functional copies of tRNA genes showed the highest barrier activity. We infer that proximity to centrochromatin does not protect genes lacking chromatin insulators from epigenetic silencing. Barrier elements that prevent gene silencing in centrochromatin would thus help to optimize transgenesis using HAC vectors.


Assuntos
Cromatina/genética , Cromossomos Artificiais Humanos , Vetores Genéticos/genética , Transgenes , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , DNA Satélite/genética , Expressão Gênica , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , RNA de Transferência/genética
10.
BMC Cancer ; 13: 252, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23694679

RESUMO

BACKGROUND: Aneuploidy is a feature of most cancer cells that is often accompanied by an elevated rate of chromosome mis-segregation termed chromosome instability (CIN). While CIN can act as a driver of cancer genome evolution and tumor progression, recent findings point to the existence of a threshold level beyond which CIN becomes a barrier to tumor growth and therefore can be exploited therapeutically. Drugs known to increase CIN beyond the therapeutic threshold are currently few in number, and the clinical promise of targeting the CIN phenotype warrants new screening efforts. However, none of the existing methods, including the in vitro micronuclei (MNi) assay, developed to quantify CIN, is entirely satisfactory. METHODS: We have developed a new assay for measuring CIN. This quantitative assay for chromosome mis-segregation is based on the use of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Thus, cells that inherit the HAC display green fluorescence, while cells lacking the HAC do not. This allows the measurement of HAC loss rate by routine flow cytometry. RESULTS: Using the HAC-based chromosome loss assay, we have analyzed several well-known anti-mitotic, spindle-targeting compounds, all of which have been reported to induce micronuclei formation and chromosome loss. For each drug, the rate of HAC loss was accurately measured by flow cytometry as a proportion of non-fluorescent cells in the cell population which was verified by FISH analysis. Based on our estimates, despite their similar cytotoxicity, the analyzed drugs affect the rates of HAC mis-segregation during mitotic divisions differently. The highest rate of HAC mis-segregation was observed for the microtubule-stabilizing drugs, taxol and peloruside A. CONCLUSION: Thus, this new and simple assay allows for a quick and efficient screen of hundreds of drugs to identify those affecting chromosome mis-segregation. It also allows ranking of compounds with the same or similar mechanism of action based on their effect on the rate of chromosome loss. The identification of new compounds that increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target the CIN phenotype in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Instabilidade Cromossômica/efeitos dos fármacos , Cromossomos Artificiais Humanos/genética , Técnicas Genéticas , Proteínas de Fluorescência Verde/genética , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Transgenes
11.
Nucleic Acids Res ; 41(10): e107, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23558748

RESUMO

Human artificial chromosome (HAC)-based vectors represent an alternative technology for gene delivery and expression with a potential to overcome the problems caused by the use of viral-based vectors. The recently developed alphoid(tetO)-HAC has an advantage over other HAC vectors because it can be easily eliminated from cells by inactivation of the HAC kinetochore via binding of tTS chromatin modifiers to its centromeric tetO sequences. This provides unique control for phenotypes induced by genes loaded into the alphoid(tetO)-HAC. However, inactivation of the HAC kinetochore requires transfection of cells by a retrovirus vector, a step that is potentially mutagenic. Here, we describe an approach to re-engineering the alphoid(tetO)-HAC that allows verification of phenotypic changes attributed to expression of genes from the HAC without a transfection step. In the new HAC vector, a tTS-EYFP cassette is inserted into a gene-loading site along with a gene of interest. Expression of the tTS generates a self-regulating fluctuating heterochromatin on the alphoid(tetO)-HAC that induces fast silencing of the genes on the HAC without significant effects on HAC segregation. This silencing of the HAC-encoded genes can be readily recovered by adding doxycycline. The newly modified alphoid(tetO)-HAC-based system has multiple applications in gene function studies.


Assuntos
Cromossomos Artificiais Humanos , Inativação Gênica , Animais , Células CHO , Linhagem Celular , Cromatina/metabolismo , Cricetinae , Cricetulus , DNA Satélite/química , Doxiciclina/farmacologia , Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Genes , Humanos , Cinetocoros/metabolismo , Fenótipo , Proteínas Repressoras/metabolismo , Transgenes
12.
Proc Natl Acad Sci U S A ; 108(50): 20048-53, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123967

RESUMO

Human artificial chromosome (HAC)-based vectors offer a promising system for delivery and expression of full-length human genes of any size. HACs avoid the limited cloning capacity, lack of copy number control, and insertional mutagenesis caused by integration into host chromosomes that plague viral vectors. We previously described a synthetic HAC that can be easily eliminated from cell populations by inactivation of its conditional kinetochore. Here, we demonstrate the utility of this HAC, which has a unique gene acceptor site, for delivery of full-length genes and correction of genetic deficiencies in human cells. A battery of functional tests was performed to demonstrate expression of NBS1 and VHL genes from the HAC at physiological levels. We also show that phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. This generation of human artificial chromosomes should be suitable for studies of gene function and therapeutic applications.


Assuntos
Centrômero/genética , Cromossomos Artificiais Humanos/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Animais , Autoantígenos/metabolismo , Células CHO , Proteínas de Ciclo Celular/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Artificiais de Levedura/genética , Clonagem Molecular , Cricetinae , Cricetulus , Expressão Gênica , Teste de Complementação Genética , Genoma Humano/genética , Humanos , Hibridização in Situ Fluorescente , Integrases/metabolismo , Mutagênese Insercional/genética , Proteínas Nucleares/genética , Recombinação Genética/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
13.
Nucleic Acids Res ; 38(2): 548-58, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19906736

RESUMO

Translation termination in eukaryotes is governed by the concerted action of eRF1 and eRF3 factors. eRF1 recognizes the stop codon in the A site of the ribosome and promotes nascent peptide chain release, and the GTPase eRF3 facilitates this peptide release via its interaction with eRF1. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay through its association with cytoplasmic poly(A)-binding protein (PABP) via PAM2-1 and PAM2-2 motifs in the N-terminal domain of eRF3. We have studied complex formation between full-length eRF3 and its ligands (GDP, GTP, eRF1 and PABP) using isothermal titration calorimetry, demonstrating formation of the eRF1:eRF3:PABP:GTP complex. Analysis of the temperature dependence of eRF3 interactions with G nucleotides reveals major structural rearrangements accompanying formation of the eRF1:eRF3:GTP complex. This is in contrast to eRF1:eRF3:GDP complex formation, where no such rearrangements were detected. Thus, our results agree with the established active role of GTP in promoting translation termination. Through point mutagenesis of PAM2-1 and PAM2-2 motifs in eRF3, we demonstrate that PAM2-2, but not PAM2-1 is indispensible for eRF3:PABP complex formation.


Assuntos
Guanosina Trifosfato/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Biologia Computacional , Guanosina Difosfato/metabolismo , Humanos , Mutagênese , Fatores de Terminação de Peptídeos/genética , Estrutura Terciária de Proteína , Temperatura
14.
Proteins ; 70(2): 388-93, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17680691

RESUMO

Eukaryotic translational termination is triggered by polypeptide release factors eRF1, eRF3, and one of the three stop codons at the ribosomal A-site. Isothermal titration calorimetry shows that (i) the separated MC, M, and C domains of human eRF1 bind to eRF3; (ii) GTP binding to eRF3 requires complex formation with either the MC or M + C domains; (iii) the M domain interacts with the N and C domains; (iv) the MC domain and Mg2+ induce GTPase activity of eRF3 in the ribosome. We suggest that GDP binding site of eRF3 acquires an ability to bind gamma-phosphate of GTP if altered by cooperative action of the M and C domains of eRF1. Thus, the stop-codon decoding is associated with the N domain of eRF1 while the GTPase activity of eRF3 is controlled by the MC domain of eRF1 demonstrating a substantial structural uncoupling of these two activities though functionally they are interrelated.


Assuntos
Guanosina Trifosfato/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Calorimetria , Códon de Terminação , GTP Fosfo-Hidrolases/metabolismo , Humanos , Termodinâmica
15.
Nucleic Acids Res ; 34(14): 3947-54, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16914449

RESUMO

GTP hydrolysis catalyzed in the ribosome by a complex of two polypeptide release factors, eRF1 and eRF3, is required for fast and efficient termination of translation in eukaryotes. Here, isothermal titration calorimetry is used for the quantitative thermodynamic characterization of eRF3 interactions with guanine nucleotides, eRF1 and Mg2+. We show that (i) eRF3 binds GDP (K(d) = 1.9 microM) and this interaction depends only minimally on the Mg(2+) concentration; (ii) GTP binds to eRF3 (K(d) = 0.5 microM) only in the presence of eRF1 and this interaction depends on the Mg2+ concentration; (iii) GTP displaces GDP from the eRF1*eRF3*GDP complex, and vice versa; (iv) eRF3 in the GDP-bound form improves its ability to bind eRF1; (v) the eRF1*eRF3 complex binds GDP as efficiently as free eRF3; (vi) the eRF1*eRF3 complex is efficiently formed in the absence of GDP/GTP but requires the presence of the C-terminus of eRF1 for complex formation. Our results show that eRF1 mediates GDP/GTP displacement on eRF3. We suggest that after formation of eRF1*eRF3*GTP*Mg2+, this quaternary complex binds to the ribosomal pretermination complex containing P-site-bound peptidyl-tRNA and the A-site-bound stop codon. The guanine nucleotide binding properties of eRF3 and of the eRF3*eRF1 complex profoundly differ from those of prokaryotic RF3.


Assuntos
Guanosina Trifosfato/metabolismo , Magnésio/metabolismo , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/fisiologia , Proteínas de Bactérias/fisiologia , Calorimetria , Guanosina Difosfato/metabolismo , Humanos , Modelos Biológicos
16.
Nucleic Acids Res ; 33(19): 6418-25, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16282590

RESUMO

In eukaryotic ribosome, the N domain of polypeptide release factor eRF1 is involved in decoding stop signals in mRNAs. However, structure of the decoding site remains obscure. Here, we specifically altered the stop codon recognition pattern of human eRF1 by point mutagenesis of the invariant Glu55 and Tyr125 residues in the N domain. The 3D structure of generated eRF1 mutants was not destabilized as demonstrated by calorimetric measurements and calculated free energy perturbations. In mutants, the UAG response was most profoundly and selectively affected. Surprisingly, Glu55Arg mutant completely retained its release activity. Substitution of the aromatic ring in position 125 reduced response toward all stop codons. This result demonstrates the critical importance of Tyr125 for maintenance of the intact structure of the eRF1 decoding site. The results also suggest that Tyr125 is implicated in recognition of the 3d stop codon position and probably forms an H-bond with Glu55. The data point to a pivotal role played by the YxCxxxF motif (positions 125-131) in purine discrimination of the stop codons. We speculate that eRF1 decoding site is formed by a 3D network of amino acids side chains.


Assuntos
Ácido Glutâmico/química , Fatores de Terminação de Peptídeos/química , Tirosina/química , Sequência de Aminoácidos , Códon de Terminação , Ácido Glutâmico/genética , Humanos , Ligação de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Desnaturação Proteica , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...