Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 783, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951619

RESUMO

Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.


Assuntos
Cromatina , Proteínas de Drosophila , Interfase , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Animais , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Núcleo Celular/metabolismo , Sítios de Ligação
2.
Epigenetics Chromatin ; 17(1): 18, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783373

RESUMO

The three-dimensional organization of the genome plays a central role in the regulation of cellular functions, particularly in the human brain. This review explores the intricacies of chromatin organization, highlighting the distinct structural patterns observed between neuronal and non-neuronal brain cells. We integrate findings from recent studies to elucidate the characteristics of various levels of chromatin organization, from differential compartmentalization and topologically associating domains (TADs) to chromatin loop formation. By defining the unique chromatin landscapes of neuronal and non-neuronal brain cells, these distinct structures contribute to the regulation of gene expression specific to each cell type. In particular, we discuss potential functional implications of unique neuronal chromatin organization characteristics, such as weaker compartmentalization, neuron-specific TAD boundaries enriched with active histone marks, and an increased number of chromatin loops. Additionally, we explore the role of Polycomb group (PcG) proteins in shaping cell-type-specific chromatin patterns. This review further emphasizes the impact of variations in chromatin architecture between neuronal and non-neuronal cells on brain development and the onset of neurological disorders. It highlights the need for further research to elucidate the details of chromatin organization in the human brain in order to unravel the complexities of brain function and the genetic mechanisms underlying neurological disorders. This research will help bridge a significant gap in our comprehension of the interplay between chromatin structure and cell functions.


Assuntos
Encéfalo , Cromatina , Neurônios , Humanos , Neurônios/metabolismo , Neurônios/citologia , Cromatina/metabolismo , Animais , Encéfalo/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Montagem e Desmontagem da Cromatina
3.
Nucleic Acids Res ; 52(11): 6234-6252, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38647066

RESUMO

Chromatin architecture regulates gene expression and shapes cellular identity, particularly in neuronal cells. Specifically, polycomb group (PcG) proteins enable establishment and maintenance of neuronal cell type by reorganizing chromatin into repressive domains that limit the expression of fate-determining genes and sustain distinct gene expression patterns in neurons. Here, we map the 3D genome architecture in neuronal and non-neuronal cells isolated from the Wernicke's area of four human brains and comprehensively analyze neuron-specific aspects of chromatin organization. We find that genome segregation into active and inactive compartments is greatly reduced in neurons compared to other brain cells. Furthermore, neuronal Hi-C maps reveal strong long-range interactions, forming a specific network of PcG-mediated contacts in neurons that is nearly absent in other brain cells. These interacting loci contain developmental transcription factors with repressed expression in neurons and other mature brain cells. But only in neurons, they are rich in bivalent promoters occupied by H3K4me3 histone modification together with H3K27me3, which points to a possible functional role of PcG contacts in neurons. Importantly, other layers of chromatin organization also exhibit a distinct structure in neurons, characterized by an increase in short-range interactions and a decrease in long-range ones.


Assuntos
Cromatina , Genoma Humano , Proteínas do Grupo Polycomb , Humanos , Encéfalo/metabolismo , Encéfalo/citologia , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Neurônios/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Regiões Promotoras Genéticas
4.
Nucleic Acids Res ; 50(6): 3203-3225, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35166842

RESUMO

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters' detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.


Assuntos
Cromatina , Drosophila , Animais , Diferenciação Celular/genética , Cromatina/genética , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Células Germinativas , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...