Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34300934

RESUMO

It is well-known that the effect of interstitial fluid on the fracture pattern and strength of saturated high-strength concrete is determined by qualitatively different mechanisms at quasi-static and high strain rate loading. This paper shows that the intermediate range of strain rates (10-4 s-1 < ε˙ < 100 s-1) is also characterized by the presence of a peculiar mechanism of interstitial water effect on the concrete fracture and compressive strength. Using computer simulations, we have shown that such a mechanism is the competition of two oppositely directed processes: deformation of the pore space, which leads to an increase in pore pressure; and pore fluid flow. The balance of these processes can be effectively characterized by the Darcy number, which generalizes the notion of strain rate to fluid-saturated material. We have found that the dependence of the compressive strength of high-strength concrete on the Darcy number is a decreasing sigmoid function. The parameters of this function are determined by both low-scale (capillary) and large-scale (microscopic) pore subsystems in a concrete matrix. The capillary pore network determines the phenomenon of strain-rate sensitivity of fluid-saturated concrete and logistic form of the dependence of compressive strength on strain rate. Microporosity controls the actual boundary of the quasi-static loading regime for fluid-saturated samples and determines localized fracture patterns. The results of the study are relevant to the design of special-purpose concretes, as well as the assessment of the limits of safe impacts on concrete structural elements.

2.
Sensors (Basel) ; 18(9)2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30205568

RESUMO

The article presents an overview of the theoretical and experimental work related to unmanned aerial vehicles (UAVs) motion parameters estimation based on the integration of video measurements obtained by the on-board optoelectronic camera and data from the UAV's own inertial navigation system (INS). The use of various approaches described in the literature which show good characteristics in computer simulations or in fairly simple conditions close to laboratory ones demonstrates the sufficient complexity of the problems associated with adaption of camera parameters to the changing conditions of a real flight. In our experiments, we used computer simulation methods applying them to the real images and processing methods of videos obtained during real flights. For example, it was noted that the use of images that are very different in scale and in the aspect angle from the observed images in flight makes it very difficult to use the methodology of singular points. At the same time, the matching of the observed and reference images using rectilinear segments, such as images of road sections and the walls of the buildings look quite promising. In addition, in our experiments we used the projective transformation matrix computation from frame to frame, which together with the filtering estimates for the coordinate and angular velocities provides additional possibilities for estimating the UAV position. Data on the UAV position determining based on the methods of video navigation obtained during real flights are presented. New approaches to video navigation obtained using the methods of conjugation rectilinear segments, characteristic curvilinear elements and segmentation of textured and colored regions are demonstrated. Also the application of the method of calculating projective transformations from frame-to-frame is shown which gives estimates of the displacements and rotations of the apparatus and thereby serves to the UAV position estimation by filtering. Thus, the aim of the work was to analyze various approaches to UAV navigation using video data as an additional source of information about the position and velocity of the vehicle.

3.
Sensors (Basel) ; 15(12): 29802-20, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26633394

RESUMO

The article presents an approach to the control of a UAV on the basis of 3D landmark observations. The novelty of the work is the usage of the 3D RANSAC algorithm developed on the basis of the landmarks' position prediction with the aid of a modified Kalman-type filter. Modification of the filter based on the pseudo-measurements approach permits obtaining unbiased UAV position estimation with quadratic error characteristics. Modeling of UAV flight on the basis of the suggested algorithm shows good performance, even under significant external perturbations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...