Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 110: 43-50, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604346

RESUMO

PURPOSE: Lower extremity magnetic resonance angiography (MRA) without electrocardiography (ECG) or peripheral pulse unit (PPU) triggering and contrast enhancement is beneficial for diagnosing peripheral arterial disease (PAD) while avoiding synchronization failure and nephrogenic systemic fibrosis. This study aimed to compare the diagnostic performance of turbo spin-echo-based enhanced acceleration-selective arterial spin labeling (eAccASL) (TSE-Acc) of the lower extremities with that of turbo field-echo-based eAccASL (TFE-Acc) and triggered angiography non-contrast enhanced (TRANCE). METHODS: Nine healthy volunteers and a patient with PAD were examined on a 3.0 Tesla magnetic resonance imaging (MRI) system. The artery-to-muscle signal intensity ratio (SIR) and contrast-to-noise ratio (CNR) were calculated. The arterial visibility (1: poor, 4: excellent) and artifact contamination (1: severe, 4: no) were independently assessed by two radiologists. Phase-contrast MRI and digital subtraction angiography were referenced in a patient with PAD. Friedman's test and a post-hoc test according to the Bonferroni-adjusted Wilcoxon signed-rank test were used for the SIR, CNR, and visual assessment. p < 0.05 was considered statistically significant. RESULTS: No significant differences in nearly all the SIRs were observed among the three MRA methods. Higher CNRs were observed with TSE-Acc than those with TFE-Acc (anterior tibial artery, p = 0.014; peroneal artery, p = 0.029; and posterior tibial artery, p = 0.014) in distal arterial segments; however, no significant differences were observed upon comparison with TRANCE (all p > 0.05). The arterial visibility scores exhibited similar trends as the CNRs. The artifact contamination scores with TSE-Acc were significantly lower (but within an acceptable level) compared to those with TFE-Acc. In the patient with PAD, the sluggish peripheral arteries were better visualized using TSE-Acc than those using TFE-Acc, and the collateral and stenosis arteries were better visualized using TSE-Acc than those using TRANCE. CONCLUSION: Peripheral arterial visualization was better with TSE-Acc than that with TFE-Acc in lower extremity MRA without ECG or PPU triggering and contrast enhancement, which was comparable with TRANCE as the reference standard. Furthermore, TSE-Acc may propose satisfactory diagnostic performance for diagnosing PAD in patients with arrhythmia and chronic kidney disease.


Assuntos
Meios de Contraste , Extremidade Inferior , Angiografia por Ressonância Magnética , Doença Arterial Periférica , Marcadores de Spin , Humanos , Angiografia por Ressonância Magnética/métodos , Doença Arterial Periférica/diagnóstico por imagem , Masculino , Feminino , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/irrigação sanguínea , Adulto , Pessoa de Meia-Idade , Eletrocardiografia , Idoso , Artefatos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes
2.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 79(4): 331-341, 2023 Apr 20.
Artigo em Japonês | MEDLINE | ID: mdl-36792206

RESUMO

PURPOSE: The purpose of this study was to investigate the optimal spatial resolution and temporal resolution of dynamic improved motion-sensitized driven-equilibrium steady-state free precession for visualization of respiratory-driven cerebrospinal fluid (CSF) dynamics. METHODS: We investigated the differences in the visualization using the midsagittal cross-sections of nine healthy volunteers by three imaging conditions. (A: spatial resolution 0.49×0.49×5 mm, temporal resolution 1000 ms; B: 0.49×0.49×5 mm, 430 ms; and C: 0.78×0.78×5 mm, 200 ms). First, we calculated the CSF of the third and fourth ventricles and the signal-to-noise ratio (SNR) of the pons. Next, we calculated the signal intensity ratio (SIR) of the CSF flowing at 10 cm/s or more and the CSF flowing at 10 cm/s or less due to respiration. We also calculated the difference between the inspiration and expiration SIR. Furthermore, 1) the presence of flow in the third and fourth ventricles centered on the cerebral aqueduct and 2) the change in flow due to respiration was investigated by a three-point scale visual assessment by seven radiological technologists. RESULTS: The SNR was the highest in A, the next highest in B, and the lowest in C in all cases. There were significant differences between A and B, and A and C in CSF of the third and fourth ventricles. However, there was no significant difference between B and C. The CSF signal intensity changed with respiration. The SIR of the third ventricle was higher on inspiration and lower on expiration. Conversely, the SIR of the fourth ventricle was lower on inspiration and higher on expiration. There was a significant difference between A and C and B and C in each SIR (p<0.05). The difference between inspiration and expiration SIR was the highest in B, the next highest in A, and the lowest in C in both the third and fourth ventricles. Significant differences were found between A and C, and between B and C (p<0.05). There was no significant difference in the presence of flow in the third and fourth ventricles centered on the cerebral aqueduct (p=0.264). On the other hand, there was a significant difference between the imaging conditions in the change in flow due to respiration, with B having a higher value than the others (p<0.001). CONCLUSION: The optimal spatial and temporal resolutions were 0.49×0.49×5 mm and 430 ms, respectively. The results also suggest that it is important to carefully set the imaging conditions for the spatial and temporal resolutions because of the use of phase dispersion in this method.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Razão Sinal-Ruído , Voluntários Saudáveis , Líquido Cefalorraquidiano/diagnóstico por imagem
3.
Magn Reson Imaging ; 99: 1-6, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608908

RESUMO

OBJECTIVE: Brain temperature monitoring using a catheter thermometer has been reported to be a useful technique to predict prognosis in neurosurgery. To investigate the possibility of measuring intracranial cerebrospinal fluid temperature for postoperative monitoring in patients with Moyamoya disease (MMD) after bypass surgery. MATERIALS AND METHODS: This study evaluated fifteen patients with MMD who were indicated for bypass surgery. Diffusion tensor imaging for brain thermometry were performed on a 1.5-T MR scanner. Intracranial cerebrospinal fluid temperature with/without considering the fractional anisotropy component, body temperature, C-reactive protein levels, white blood cell count, and cerebral blood flow measured by 123I-IMP single-photon emission computed tomography were obtained before surgery and 1-3 days after surgery. Pixel values considered to be signal outliers in fractional anisotropy processing were defined as cerebrospinal fluid noise index and calculated. Wilcoxon signed-rank test and effect size were performed to compare the changes before and after revascularization. Spearman's rho correlation coefficient was used to analyze the correlations between each parameter. Statistical significance was defined as p < 0.05. RESULTS: All parameter values became significantly higher compared to those measured before revascularization (p < 0.01 in all cases). The effect sizes were largest for the cerebrospinal fluid temperature with fractional anisotropy processing and for C-reactive protein levels (Rank-biserial correlation = 1.0). The cerebrospinal fluid noise index and cerebrospinal fluid temperatures with fractional anisotropy processing (r = 0.84, p < 0.0001) or without fractional anisotropy processing (r = 0.95, p < 0.0001) showed highly significant positive correlations. Although no significant correlation was observed, cerebrospinal fluid temperatures with fractional anisotropy had small or moderately positive correlations with cerebral blood flow, body temperature, C-reactive protein levels, and white blood cell count (r = 0.37, 0.42, 0.41, and 0.44, respectively; p > 0.05). CONCLUSION: Our findings suggest the possibility of postoperative monitoring for MMD patients by measuring intracranial cerebrospinal fluid temperature with fractional anisotropy processing. Intracranial cerebrospinal fluid temperature might be considered as combined response since cerebrospinal fluid, body temperature, and inflammation are equally correlated.


Assuntos
Imagem de Tensor de Difusão , Doença de Moyamoya , Humanos , Imagem de Tensor de Difusão/métodos , Temperatura , Temperatura Corporal , Proteína C-Reativa , Anisotropia
4.
Neurol Med Chir (Tokyo) ; 61(12): 711-720, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526448

RESUMO

Neurofluids, a recently developed term that refers to interstitial fluids in the parenchyma and cerebrospinal fluid (CSF) in the ventricle and subarachnoid space, play a role in draining waste products from the brain. Neurofluids have been implicated in pathological conditions such as Alzheimer's disease and normal pressure hydrocephalus. Given that CSF moves faster in the CSF cavity than in the brain parenchyma, CSF motion can be detected by magnetic resonance imaging. CSF motion is synchronized to the heartbeat and respiratory cycle, but respiratory cycle-induced CSF motion has yet to be investigated in detail. Therefore, we analyzed CSF motion using dynamic improved motion-sensitized driven-equilibrium steady-state free precession-based analysis. We analyzed CSF motion linked to the respiratory cycle in four women and six men volunteers aged 23 to 38 years. We identified differences between free respiration and tasked respiratory cycle-associated CSF motion in the ventricles and subarachnoid space. Our results indicate that semi-quantitative analysis can be performed using the cranial site at which CSF motion is most prominent as a standard. Our findings may serve as a reference for elucidating the pathophysiology of diseases caused by abnormalities in neurofluids.


Assuntos
Ventrículos Cerebrais , Imageamento por Ressonância Magnética , Ventrículos Cerebrais/diagnóstico por imagem , Líquido Cefalorraquidiano/diagnóstico por imagem , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Movimento (Física) , Espaço Subaracnóideo/diagnóstico por imagem
5.
Magn Reson Imaging ; 78: 1-6, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33486082

RESUMO

PURPOSE: Enhanced acceleration selective arterial spin labeling (eAccASL) was introduced as non-enhanced and non-gated magnetic resonance angiography (MRA). This technique has not been applied to hand MRA. The objective of this study was to optimize the eAccASL for MRA of the hands and to investigate the factors for MRA visibility of the hands. METHODS: Twenty healthy volunteers were examined on a 1.5 T MR system. To evaluate arterial visualization, we compared four different acceleration-encoding (AENC) values (i.e., 0.12, 0.29, 0.58, and 0.87 m/s2). Image quality score regarding the MRA depiction of the proximal artery (range, 0-10), the distal artery (0-5), and venous contamination (0-5) was evaluated by three radiologists. We measured the peak to peak arterial blood flow velocity (Vpp) measured by phase contrast cine MRI and hand temperature as the factors for arterial visualization. Qualitative scores were compared with Friedman's tests. Spearman's correlation of qualitative scores with Vpp and hand temperature was performed to analyze influencing factors. RESULTS: For the distal arterial depiction, scores at AENC 0.12 (median, 9.0) and AENC 0.29 (8.0) were significantly better (both P < 0.0001) than those at AENC 0.87 (5.5). For the proximal arterial depiction, scores at AENC 0.12 (2.25) and AENC 0.29 (2.0) were significantly better (P < 0.001 and P < 0.01, respectively) than those at AENC 0.87 (1.5). Conversely, venous contamination scores at AENC 0.12 (3.0) and AENC 0.29 (3.0) were significantly worse (both P < 0.0001) than those at AENC 0.87 (4.0). There were significantly negative correlations between venous contamination and Vpp at AENC 0.12 (ρ = -0.56, P = 0.01), and 0.29 (ρ = -0.68, P = 0.001), whereas hand temperatures were not significantly correlated with scores (all P > 0.05). CONCLUSION: eAccASL MRA of the hands was optimized by using low AENC values (0.12-0.29 m/s2). Venous contamination may increase with elevation of arterial blood flow.


Assuntos
Artérias/diagnóstico por imagem , Mãos/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Marcadores de Spin , Aceleração , Adulto , Meios de Contraste , Feminino , Mãos/irrigação sanguínea , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
6.
Magn Reson Med Sci ; 20(3): 312-319, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32655087

RESUMO

This study aimed to assess the feasibility for applying enhanced acceleration-selective arterial spin labeling (eAccASL) to non-electrocardiogram-gated and non-enhanced peripheral MRA. We compared eAccASL and background suppressed single shot turbo field echo (TFE)-triggered angiography non-contrast-enhanced sequence (BASS TRANCE) required electrocardiographic-gating in eight volunteers and three patients. In the volunteer study, eAccASL demonstrated a comparable arterial visualization compared with BASS TRANCE. In patient observation, the advantages with eAccASL were found in arterial visualization on the collateral vessels and without artifacts affected by arrhythmia events.


Assuntos
Artérias , Angiografia por Ressonância Magnética , Aceleração , Artefatos , Humanos , Imageamento Tridimensional , Marcadores de Spin
7.
Artigo em Japonês | MEDLINE | ID: mdl-29459537

RESUMO

Synthetic MRI can provide proton density (PD), T1 value, T2 value for each pixel by only one data acquisition and can create various contrast-weighted images. The aim of this study is to evaluate the effect on the calculation of the T1·T2 value when changing the scan parameters for synthetic MRI. In the phantom study, when changing 1st TE/2nd TE/TR/TSE factor, the effect on the T1·T2 value calculated by synthetic MRI was examined. In the volunteer study, the brain was imaged and compared with known T1·T2 value. In phantom study, the effect on the T2 value by the 1st TE/2nd TE/TSE factor was shown. In volunteer study, there was no problem in the calculated value of brain parenchyma. However, the T2 value of cerebrospinal fluid had the error of known value. The results show that it is necessary to set appropriate scan parameters on synthetic MRI.


Assuntos
Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Imagens de Fantasmas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...