Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33712423

RESUMO

Rotavirus is one of the major causes of infectious gastroenteritis among infants and children, and live attenuated vaccines for rotavirus A (RVA), namely, Rotarix and RotaTeq, have recently become available in Japan. Rotavirus is known to be excreted from patients and accumulated in oysters similar to norovirus; however, the vaccine strains in aquatic environments or oysters have not yet been analyzed. In this study, we focused on wild-type RVA, which is highly important in considering the risk of infectious diseases. We quantified total RVA, Rotarix, and RotaTeq strains in oyster and sewage samples collected between September 2014 and July 2016 to assess the contamination levels of wild-type RVA by subtracting the quantitative value of rotavirus vaccine strains from that of total RVA. The positive rates of wild-type RVA, Rotarix, and RotaTeq in oysters were 54, 14, and 31%, respectively. These rates were comparable to those of wild-type RVA (57%) and RotaTeq (35%) in sewage; however, Rotarix was not detected in any sewage samples. The comparison of viral concentrations in oysters and sewage suggested more efficient accumulation of the vaccine strains in oysters than the wild-type RVA. The concentration of wild-type RVA in oysters was significantly correlated with that in sewage with a lag time of -6 to 0 weeks which is required for viral transportation from wastewater treatment plants to oysters. On the other hand, no significant correlation was observed between wild-type RVA concentration in sewage and the number of rotavirus-associated gastroenteritis cases, implying the existence of asymptomatic RVA-infected individuals.IMPORTANCE We quantified rotavirus A (RVA), Rotarix, and RotaTeq strains in oyster and sewage samples during two gastroenteritis seasons and revealed the exact contamination of wild-type RVA by subtracting the quantitative value of rotavirus vaccine strains from that of RVA. The concentration of wild-type RVA was significantly correlated between oysters and sewage, although no significant correlation was seen between wild-type RVA concentration in sewage and the number of rotavirus-associated gastroenteritis cases. This finding suggested the existence of asymptomatic patients and that monitoring of rotavirus vaccine strain could be useful to understand the trend of wild-type RVA and rotavirus outbreak in detail. We believe that our study makes a significant contribution to the literature because it reports the detection of rotavirus vaccine strains in oysters.


Assuntos
Ostreidae/virologia , Rotavirus/isolamento & purificação , Esgotos/virologia , Animais , Monitoramento Ambiental , Epidemias , Gastroenterite/epidemiologia , Japão/epidemiologia , RNA Viral/genética , Rotavirus/genética , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus
2.
Pathogens ; 8(3)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247997

RESUMO

Concentrations of rotavirus A, in sewage and oysters collected weekly from September 2014 to April 2016 in Japan, were investigated using RT-qPCR; results showed up to 6.5 log10 copies/mL and 4.3 log10 copies/g of digestive tissue (DT) in sewage and oysters, respectively. No correlation was found between rotavirus concentration in sewage and oysters and cases of rotavirus-associated gastroenteritis.

3.
Int J Food Microbiol ; 284: 48-55, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29990639

RESUMO

Increased levels of norovirus contamination in oysters were reportedly associated with a gastroenteritis epidemic occurring upstream of an oyster farming area. In this study, we monitored the norovirus concentration in oysters weekly between November 2014 and March 2015 and investigated the statistical relationship between norovirus genogroup II (GII) concentrations in oyster and sewage samples and the number of gastroenteritis cases in the area using cross-correlation analysis. A peak correlation coefficient (R = 0.76) at a time lag of +1 week was observed between the number of gastroenteritis cases and norovirus GII concentrations in oysters, indicating that oyster contamination is correlated with the number of gastroenteritis cases with a 1-week delay. Moreover, weekly variations in norovirus GII genotypes in oysters were evaluated using pyrosequencing. Only GII.3 was detected in November and December 2014, whereas GII.17 and GII.4 were present from January to March 2015. GII.17 Kawasaki 2014 strains were detected more frequently than GII.4 Sydney 2012 strains in oyster samples, as previously observed in stool and sewage samples collected during the same study period in Miyagi, Japan. Our observations indicate that there is a time lag between the circulation of norovirus genotypes in the human population and the detection of those genotypes in oysters.


Assuntos
Infecções por Caliciviridae/epidemiologia , Gastroenterite/epidemiologia , Norovirus/genética , Ostreidae/virologia , Esgotos/virologia , Animais , Infecções por Caliciviridae/virologia , DNA Viral/genética , Fezes/virologia , Gastroenterite/virologia , Genótipo , Humanos , Japão/epidemiologia , Norovirus/classificação , Norovirus/isolamento & purificação , Filogenia
4.
Food Environ Virol ; 10(1): 61-71, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29230695

RESUMO

This study investigated the level of norovirus contamination in oysters collected at a lagoon receiving urban drainage from Hue City for 17 months (August 2015-December 2016). We also investigated the genetic diversity of norovirus GI and GII in oyster and wastewater samples by using pyrosequencing to evaluate the effect of urban drainage on norovirus contamination of oysters. A total of 34 oyster samples were collected at two sampling sites (stations A and B) in a lagoon. Norovirus GI was more frequently detected than GII (positive rate 79 vs. 41%). Maximum concentrations of GI and GII were 2.4 × 105 and 2.3 × 104 copies/g, respectively. Co-contamination with GI and GII was observed in 35% of samples. Norovirus GII concentration was higher at station A in the flood season than in the dry season (P = 0.04, Wilcoxon signed-rank test). Six genotypes (GI.2, GI.3, GI.5, GII.2, GII.3, and GII.4) were identified in both wastewater and oyster samples, and genetically similar or identical sequences were obtained from the two types of samples. These observations suggest that urban drainage and seasonal flooding contribute to norovirus contamination of oysters in the study area.


Assuntos
Inundações , Norovirus/crescimento & desenvolvimento , Ostreidae/virologia , Estações do Ano , Frutos do Mar/virologia , Águas Residuárias/virologia , Abastecimento de Água , Animais , Infecções por Caliciviridae/virologia , Cidades , Genótipo , Humanos , Norovirus/genética , Vietnã
5.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213546

RESUMO

Sewage samples have been investigated to study the norovirus concentrations in sewage or the genotypes of noroviruses circulating in human populations. However, the statistical relationship between the concentration of the virus and the number of infected individuals and the clinical importance of genotypes or strains detected in sewage are unclear. In this study, we carried out both environmental and clinical surveillance of noroviruses for 3 years, 2013 to 2016. We performed cross-correlation analysis of the concentrations of norovirus GI or GII in sewage samples collected weekly and the reported number of gastroenteritis cases. Norovirus genotypes in sewage were also analyzed by pyrosequencing and compared with those identified in stool samples. The cross-correlation analysis found the peak coefficient (R = 0.51) at a lag of zero, indicating that the variation in the GII concentration, expressed as the log10 number of copies per milliliter, was coincident with that in the gastroenteritis cases. A total of 15 norovirus genotypes and up to 8 genotypes per sample were detected in sewage, which included all of the 13 genotypes identified in the stool samples except 2. GII.4 was most frequently detected in both sample types, followed by GII.17. Phylogenetic analysis revealed that a strain belonging to the GII.17 Kawasaki 2014 lineage had been introduced into the study area in the 2012-2013 season. An increase in GI.3 cases was observed in the 2015-2016 season, and sewage monitoring identified the presence of GI.3 in the previous season (2014-2015). Our results demonstrated that monitoring of noroviruses in sewage is useful for sensitive detection of epidemic variants in human populations.IMPORTANCE We obtained statistical evidence of the relationship between the variation in the norovirus GII concentration in sewage and that of gastroenteritis cases during the 3-year study period. Sewage sample analysis by a pyrosequencing approach enabled us to understand the temporal variation in the norovirus genotypes circulating in human populations. We found that a strain closely related to the GII.17 Kawasaki 2014 lineage had been introduced into the study area at least 1 year before its appearance and identification in clinical cases. A similar pattern was observed for GI.3; cases were reported in the 2015-2016 season, and closely related strains were found in sewage in the previous season. Our observation indicates that monitoring of noroviruses in sewage is useful for the rapid detection of an epidemic and is also sensitive enough to study the molecular epidemiology of noroviruses. Applying this approach to other enteric pathogens in sewage will enhance our understanding of their ecology.


Assuntos
Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Monitoramento Ambiental , Genótipo , Norovirus/classificação , Norovirus/isolamento & purificação , Esgotos/virologia , Epidemias , Gastroenterite/epidemiologia , Gastroenterite/virologia , Humanos , Norovirus/genética , Carga Viral
6.
Food Environ Virol ; 8(4): 310-312, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27646397

RESUMO

Norovirus GII.3, GII.4, and GII.17 were detected using pyrosequencing in sewage and oysters in January and February 2015, in Japan. The strains in sewage and oyster samples were genetically identical or similar, predominant strains belonging to GII.17 Kawasaki 2014 lineage. This is the first report of GII.17 Kawasaki 2014 in oysters.


Assuntos
Contaminação de Alimentos/análise , Norovirus/isolamento & purificação , Ostreidae/virologia , Esgotos/virologia , Frutos do Mar/virologia , Animais , Genótipo , Humanos , Norovirus/classificação , Norovirus/genética , Filogenia
7.
PLoS One ; 11(8): e0160825, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525654

RESUMO

Selecting the best quantitative PCR assay is essential to detect human norovirus genome effectively from clinical and environmental samples because no cell lines have been developed to propagate this virus. The real-time PCR methods for noroviruses GI (4 assays) and GII (3 assays) were evaluated using wastewater (n = 70) and norovirus-positive stool (n = 77) samples collected in Japan between 2012 and 2013. Standard quantitative PCR assays recommended by the U.S. Environmental Protection Agency, International Organization for Standardization, and Ministry of Health, Labour and Welfare, Japan, together with recently reported assays were included. Significant differences in positive rates and quantification cycles were observed by non-parametric analysis. The present study identifies the best assay for norovirus GI and GII to amplify norovirus genomes efficiently.


Assuntos
Fezes/virologia , Norovirus/genética , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Águas Residuárias/virologia , Criança , Genótipo , Humanos , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...