Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 87: 117302, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37201454

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical molecule in Toll-like receptor/interleukin-1 receptor signaling and an attractive therapeutic target for a wide range of inflammatory and autoimmune diseases as well as cancers. In our search for novel IRAK4 inhibitors, we conducted structural modification of a thiazolecarboxamide derivative 1, a lead compound derived from high-throughput screening hits, to elucidate structure-activity relationship and improve drug metabolism and pharmacokinetic (DMPK) properties. First, conversion of the thiazole ring of 1 to an oxazole ring along with introduction of a methyl group at the 2-position of the pyridine ring aimed at reducing cytochrome P450 (CYP) inhibition were conducted to afford 16. Next, modification of the alkyl substituent at the 1-position of the pyrazole ring of 16 aimed at improving CYP1A2 induction properties revealed that branched alkyl and analogous substituents such as isobutyl (18) and (oxolan-3-yl)methyl (21), as well as six-membered saturated heterocyclic groups such as oxan-4-yl (2), piperidin-4-yl (24, 25), and dioxothian-4-y (26), are effective for reducing induction potential. Representative compound AS2444697 (2) exhibited potent IRAK4 inhibitory activity with an IC50 value of 20 nM and favorable DMPK properties such as low risk of drug-drug interactions mediated by CYPs as well as excellent metabolic stability and oral bioavailability.


Assuntos
Citocromo P-450 CYP1A2 , Quinases Associadas a Receptores de Interleucina-1 , Anticonvulsivantes/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Oxazóis , Pirazóis/farmacologia , Pirazóis/química , Relação Estrutura-Atividade
2.
Bioorg Med Chem ; 22(13): 3478-87, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24837158

RESUMO

Herein, we describe the synthesis and pharmacological profiles of novel quinuclidinyl heteroarylcarbamate derivatives. Among them, the quinuclidin-4-yl thiazolylcarbamate derivative ASP9133 was identified as a promising long-acting muscarinic antagonist (LAMA) showing more selective inhibition of bronchoconstriction against salivation and more rapid onset of action in a rat model than tiotropium bromide.


Assuntos
Carbamatos/farmacologia , Quinuclidinas/farmacologia , Receptor Muscarínico M3/antagonistas & inibidores , Animais , Carbamatos/síntese química , Carbamatos/química , Relação Dose-Resposta a Droga , Masculino , Modelos Moleculares , Estrutura Molecular , Quinuclidinas/síntese química , Quinuclidinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
3.
Antimicrob Agents Chemother ; 57(3): 1339-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274658

RESUMO

ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus 1 (HSV-1), HSV-2, and varicella zoster virus. Here, to determine and analyze the correlation between the pharmacodynamic (PD) and pharmacokinetic (PK) parameters of ASP2151, we examined the PD profile of ASP2151 using in vitro plaque reduction assay and a murine model of HSV-1 infection. ASP2151 inhibited the in vitro replication of HSV-1 with a mean 50% effective concentration (EC(50)) of 14 ng/ml. In the cutaneously HSV-1-infected mouse model, ASP2151 dose dependently suppressed intradermal HSV-1 growth, with the effect reaching a plateau at a dose of 30 mg/kg of body weight/day. The dose fractionation study showed that intradermal HSV-1 titers were below the detection limit in mice treated with ASP2151 at 100 mg/kg/day divided into two daily doses and at 30 or 100 mg/kg/day divided into three daily doses. The intradermal HSV-1 titer correlated with the maximum concentration of drug in serum (C(max)), the area under the concentration-time curve over 24 h (AUC(24h)), and the time during which the concentration of ASP2151 in plasma was above 100 ng/ml (T(>100)). The continuous infusion of ASP2151 effectively decreased intradermal HSV-1 titers below the limit of detection in mice in which the ASP2151 concentration in plasma reached 79 to 145 ng/ml. Our findings suggest that the antiviral efficacy of ASP2151 is most closely associated with the PK parameter T(>100) in HSV-1-infected mice. Based on these results, we propose that a plasma ASP2151 concentration exceeding 100 ng/ml for 21 to 24 h per day provides the maximum efficacy in HSV-1-infected mice.


Assuntos
Antivirais/farmacocinética , DNA Helicases/antagonistas & inibidores , DNA Primase/antagonistas & inibidores , Inibidores Enzimáticos/farmacocinética , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Oxidiazóis/farmacocinética , Proteínas Virais/antagonistas & inibidores , Animais , Antivirais/sangue , Antivirais/farmacologia , Área Sob a Curva , DNA Helicases/metabolismo , DNA Primase/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/farmacologia , Feminino , Herpes Simples/virologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Camundongos , Camundongos Pelados , Oxidiazóis/sangue , Oxidiazóis/farmacologia , Pele/efeitos dos fármacos , Pele/virologia , Ensaio de Placa Viral , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
4.
J Med Chem ; 55(17): 7772-85, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22905713

RESUMO

Several p38 MAPK inhibitors have been shown to effectively block the production of cytokines such as IL-1ß, TNFα, and IL-6. Inhibitors of p38 MAP kinase therefore have significant therapeutic potential for the treatment of autoimmune disease. Compound 2a was identified as a potent TNFα production inhibitor in vitro but suffered from poor oral bioavailability. Structural modification of 2a led to the discovery of tetrahydropyrazolopyrimidine derivatives, exemplified by compound 3, with an improved pharmacokinetic profile. We found that blocking metabolism at the methyl group of the amine and constructing the tetrahydropyrimidine core were important to obtaining compounds with good biological profiles and oral bioavailability. Pursuing the structure-activity relationships of this series led to the discovery of AS1940477 (3f), with excellent cellular activity and a favorable pharmacokinetic profile. This compound represents a highly potent inhibitor of p38 MAP kinase with regard to in vivo activity in an adjuvant-induced arthritis model.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Disponibilidade Biológica , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética
5.
Biochem Pharmacol ; 84(4): 459-67, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22687623

RESUMO

ASP2151 is an antiherpes agent targeting the helicase-primase complex of herpes simplex virus (HSV)-1, HSV-2, and varicella-zoster virus (VZV). We characterized the ASP2151-resistant HSV-1 and HSV-2 variants or mutants based on findings from sequencing analysis, growth, pathogenicity, and susceptibility testing, identifying several single base-pair substitutions resulting in amino acid changes in the helicase and primase subunit of ASP2151-resistant mutants. Amino acid alterations in the helicase subunit were clustered near helicase motif IV in the UL5 helicase gene of both HSV-1 and HSV-2, while the primase subunit substitution associated with reduced susceptibility, R367H, was found in ASP2151-resistant HSV-1 mutants. However, while susceptibility in the ASP2151-resistant HSV mutants to existing antiherpes agents was equivalent to that in wild-type HSV strains, ASP2151-resistant HSV mutants showed attenuated in vitro growth capability and in vivo pathogenicity compared with the parent strains. Taken together, our present findings demonstrated that important amino acid substitutions associated with reduced susceptibilities of HSV-1 and HSV-2 to ASP2151 exist in both the helicase and primase subunits of the helicase-primase complex, and that mutations in this complex against ASP2151 might confer defects in viral replication and pathogenicity.


Assuntos
Antivirais/farmacologia , DNA Helicases/antagonistas & inibidores , DNA Primase/antagonistas & inibidores , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Oxidiazóis/farmacologia , Proteínas Virais/antagonistas & inibidores , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células Cultivadas , Chlorocebus aethiops , DNA Helicases/genética , DNA Primase/genética , Farmacorresistência Viral , Feminino , Herpes Simples/virologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 2/enzimologia , Herpesvirus Humano 2/genética , Humanos , Camundongos , Camundongos Pelados , Dados de Sequência Molecular , Mutação , Ensaio de Placa Viral , Proteínas Virais/genética
6.
Antimicrob Agents Chemother ; 56(7): 3587-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526302

RESUMO

ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. To evaluate the anti-HSV activity of ASP2151, susceptibility testing was performed on viruses isolated from patients participating in a placebo- and valacyclovir-controlled proof-of-concept phase II study for recurrent genital herpes. A total of 156 HSV strains were isolated prior to the dosing of patients, and no preexisting variants with less susceptibility to ASP2151 or acyclovir (ACV) were detected. ASP2151 inhibited HSV-1 and HSV-2 replication with mean 50% effective concentrations (EC(50)s) of 0.043 and 0.069 µM, whereas ACV exhibited mean EC(50)s of 2.1 and 3.2 µM, respectively. Notably, the susceptibilities of HSV isolates to ASP2151 and ACV were not altered after dosing with the antiviral agents. Taken together, these results demonstrate that ASP2151 inhibits the replication of HSV clinical isolates more potently than ACV, and HSV resistant to this novel helicase-primase inhibitor as well as ACV may not easily emerge in short-term treatment for recurrent genital herpes patients.


Assuntos
Antivirais/farmacologia , DNA Helicases/antagonistas & inibidores , DNA Primase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Herpes Genital/virologia , Oxidiazóis/farmacologia , Simplexvirus/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Aciclovir/farmacologia , Humanos , Simplexvirus/enzimologia
7.
Molecules ; 16(9): 7210-23, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21869749

RESUMO

ASP2151 is a herpesvirus helicase-primase inhibitor with antiviral activity against varicella zoster virus and herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Here, we examined the potency and efficacy of ASP2151 against HSV in vitro and in vivo. We found that ASP2151 was more potent in inhibiting the replication of HSV-1 and HSV-2 in Vero cells in the plaque reduction assay and had greater anti-HSV activity in a guinea pig model of genital herpes than did acyclovir and valacyclovir (VACV), respectively. Oral ASP2151 given from the day of infection reduced peak and overall disease scores in a dose-dependent manner, resulting in complete prevention of symptoms at the dose of 30 mg/kg. The 50% effective dose (ED(50)) values for ASP2151 and VACV were 0.37 and 68 mg/kg, respectively, indicating that ASP2151 was 184-fold more potent than VACV. When ASP2151 was administered after the onset of symptoms, the disease course of genital herpes was suppressed more effectively than by VACV, with a significant reduction in disease score observed one day after starting ASP2151 at 30 mg/kg, whereas the therapeutic effect of VACV was only evident three days after treatment at the highest dose tested (300 mg/kg). This indicated that ASP2151 possesses a faster onset of action and wider therapeutic time window than VACV. Further, virus shedding from the genital mucosa was significantly reduced with ASP2151 at 10 and 30 mg/kg but not with VACV, even at 300 mg/kg. Taken together, our present findings demonstrated the superior potency and efficacy of ASP2151 against HSV.


Assuntos
Antivirais/farmacologia , DNA Helicases/antagonistas & inibidores , DNA Primase/antagonistas & inibidores , Herpes Genital/tratamento farmacológico , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 2/enzimologia , Oxidiazóis/farmacologia , Proteínas Virais/antagonistas & inibidores , Aciclovir/análogos & derivados , Aciclovir/farmacologia , Animais , Antivirais/uso terapêutico , Área Sob a Curva , Avaliação Pré-Clínica de Medicamentos , Feminino , Cobaias , Herpes Genital/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/crescimento & desenvolvimento , Oxidiazóis/uso terapêutico , Valaciclovir , Valina/análogos & derivados , Valina/farmacologia , Carga Viral/efeitos dos fármacos , Ensaio de Placa Viral , Eliminação de Partículas Virais/efeitos dos fármacos
8.
J Antimicrob Chemother ; 65(8): 1733-41, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20534624

RESUMO

OBJECTIVES: To evaluate and describe the anti-herpesvirus effect of ASP2151, amenamevir, a novel non-nucleoside oxadiazolylphenyl-containing herpesvirus helicase-primase complex inhibitor. METHODS: The inhibitory effect of ASP2151 on enzymatic activities associated with a recombinant HSV-1 helicase-primase complex was assessed. To investigate the effect on viral DNA replication, we analysed viral DNA in cells infected with herpesviruses [herpes simplex virus (HSV), varicella-zoster virus (VZV) and human cytomegalovirus]. Sequencing analyses were conducted on an ASP2151-resistant VZV mutant. In vitro and in vivo antiviral activities were evaluated using a plaque reduction assay and an HSV-1-infected zosteriform-spread model in mice. RESULTS: ASP2151 inhibited the single-stranded DNA-dependent ATPase, helicase and primase activities associated with the HSV-1 helicase-primase complex. Antiviral assays revealed that ASP2151, unlike other known HSV helicase-primase inhibitors, exerts equipotent activity against VZV, HSV-1 and HSV-2 through prevention of viral DNA replication. Further, the anti-VZV activity of ASP2151 (EC(50), 0.038-0.10 microM) was more potent against all strains tested than that of aciclovir (EC(50), 1.3-27 microM). ASP2151 was also active against aciclovir-resistant VZV. Amino acid substitutions were found in helicase and primase subunits of ASP2151-resistant VZV. In a mouse zosteriform-spread model, ASP2151 was orally active and inhibited disease progression more potently than valaciclovir. CONCLUSIONS: ASP2151 is a novel herpes helicase-primase inhibitor that warrants further investigation for the potential treatment of both VZV and HSV infections.


Assuntos
Antivirais/farmacologia , DNA Helicases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 3/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Citomegalovirus/efeitos dos fármacos , Análise Mutacional de DNA , Modelos Animais de Doenças , Farmacorresistência Viral , Inibidores Enzimáticos/uso terapêutico , Feminino , Herpes Zoster/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA , Ensaio de Placa Viral , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
9.
Bioorg Med Chem ; 17(19): 6926-36, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19747833

RESUMO

Signal transducers and activators of transcription 6 (STAT6) is an important transcription factor in interleukin (IL)-4 signaling pathway and a key regulator of the type 2 helper T (Th2) cell immune response. Therefore, STAT6 may be an excellent therapeutic target for allergic conditions, including asthma and atopic diseases. Previously, we reported 4-aminopyrimidine-5-carboxamide derivatives as STAT6 inhibitors. To search for novel STAT6 inhibitors, we synthesized fused bicyclic pyrimidine derivatives and identified a 7H-pyrrolo[2,3-d]pyrimidine derivative as a STAT6 inhibitor. Optimization of the pyrrolopyrimidine derivatives led to identification of 2-[4-(4-{[7-(3,5-difluorobenzyl)-7H-pyrrolo[2,3-d]pyrimidin-2-yl]amino}phenyl)piperazin-1-yl]acetamide (24, AS1810722) which showed potent STAT6 inhibition and a good CYP3A4 inhibition profile. Compound 24 also inhibited in vitro Th2 differentiation without affecting type 1 helper T (Th1) cell differentiation and eosinophil infiltration in an antigen-induced mouse asthmatic model after oral administration.


Assuntos
Pirimidinas/síntese química , Pirróis/síntese química , Fator de Transcrição STAT6/antagonistas & inibidores , Administração Oral , Animais , Asma/tratamento farmacológico , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Eosinófilos/efeitos dos fármacos , Humanos , Imunidade , Camundongos , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Relação Estrutura-Atividade , Células Th2/efeitos dos fármacos
10.
Bioorg Med Chem ; 13(4): 949-61, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15670903

RESUMO

In a previous study, we described the structure-activity relationships (SARs) for a series of thiazolidenebenzenesulfonamide derivatives. These compounds were found to be highly potent inhibitors of the wild type (WT) and Y181C mutant reverse transcriptases (RTs) and modest inhibitors of K103N RT. These molecules are thus considered to be a novel class of non-nucleoside HIV-1 RT inhibitors (NNRTIs). In this paper, we have examined the effects of substituents on both the thiazolidene and benzenesulfonamide moieties. Introduction of a 2-cyanophenyl ring into these moieties significantly enhanced anti-HIV-1 activity, whereas a 2-hydroxyphenyl group endowed potent activity against RTs, including K103N and Y181C mutants. Among the series of molecules examined, 10l and 18b (YM-228855), combinations of 2-cyanophenyl and 4-methyl-5-isopropylthiazole moieties, showed extremely potent anti-HIV-1 activity. The EC50 values of 101 and 18b were 0.0017 and 0.0018 microM, respectively. These values were lower than that of efavirenz (3). Compound 11g (YM-215389), a combination of 2-hydroxyphenyl and 4-chloro-5-isopropylthiazole moieties, proved to be the most active against both K103N and Y181C RTs with IC50 values of 0.043 and 0.013 microM, respectively.


Assuntos
Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Linhagem Celular , HIV-1/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Inibidores da Transcriptase Reversa/química , Espectrometria de Massas de Bombardeamento Rápido de Átomos , Relação Estrutura-Atividade , Sulfonamidas/química
11.
Bioorg Med Chem ; 12(23): 6171-82, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15519161

RESUMO

A random high-throughput screening (HTS) program to discover novel nonnucleoside reverse transcriptase inhibitors (NNRTIs) has been carried out with MT-4 cells against a nevirapine-resistant virus, HIV-1(IIIB-R). The primary hit, a thiazolidenebenzenesulfonamide derivative, possessed good activity. A systematic modification program examining various substituents at the 3-, 4-, and 5-positions on the thiazole ring afforded compounds with enhanced anti-HIV-1 and reverse transcriptase (RT) inhibitory activities. These results confirm the important role of the substituents at these positions and the thiazolidenebenzenesulfonamide motif as a valuable lead series for the next generation NNRTIs.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Inibidores da Transcriptase Reversa/síntese química , Sulfonamidas/síntese química , Benzenossulfonatos , Sítios de Ligação , Farmacorresistência Viral , HIV-1/efeitos dos fármacos , Estrutura Molecular , Nevirapina , Ligação Proteica , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Tiazóis , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...