Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109512, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38715938

RESUMO

LMTK3 is a brain-specific transmembrane serine/threonine protein kinase that acts as a scaffold for protein phosphatase-1 (PP1). Although LMKT3 has been identified as a risk factor for autism and epilepsy, its physiological significance is unknown. Here, we demonstrate that LMTK3 copurifies and binds to KCC2, a neuron-specific K+/Cl- transporter. KCC2 activity is essential for Cl--mediated hyperpolarizing GABAAR receptor currents, the unitary events that underpin fast synaptic inhibition. LMTK3 acts to promote the association of KCC2 with PP1 to promote the dephosphorylation of S940 within its C-terminal cytoplasmic domain, a process the diminishes KCC2 activity. Accordingly, acute inhibition of LMTK3 increases KCC2 activity dependent upon S940 and increases neuronal Cl- extrusion. Consistent with this, LMTK3 inhibition reduced intrinsic neuronal excitability and the severity of seizure-like events in vitro. Thus, LMTK3 may have profound effects on neuronal excitability as an endogenous modulator of KCC2 activity.

2.
Elife ; 102021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190042

RESUMO

The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30-80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.


Assuntos
Interneurônios/fisiologia , Parvalbuminas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal , Feminino , Genótipo , Hipocampo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/fisiologia , Parvalbuminas/genética , Proteínas rho de Ligação ao GTP/genética
3.
J Biol Chem ; 296: 100364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539918

RESUMO

The K+/Cl- cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl- levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally, which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture, we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization, or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture.


Assuntos
Neurônios/metabolismo , Simportadores/metabolismo , Animais , Apoptose , Cloretos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/efeitos dos fármacos , Neurônios/fisiologia , Potássio/metabolismo , Cultura Primária de Células , Receptores de GABA/metabolismo , Convulsões , Simportadores/fisiologia , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl-
4.
Front Mol Neurosci ; 13: 563091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192291

RESUMO

Kcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanisms neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of K-Cl Co-transporter 2 (Kcc2) from the plasma membrane of murine forebrain. We resolved these using blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS and label-free quantification. Data are available via ProteomeXchange with identifier PXD021368. Purified Kcc2 migrated as distinct molecular species of 300, 600, and 800 kDa following BN-PAGE. In excess of 90% coverage of the soluble N- and C-termini of Kcc2 was obtained. In total we identified 246 proteins significantly associated with Kcc2. The 300 kDa species largely contained Kcc2, which is consistent with a dimeric quaternary structure for this transporter. The 600 and 800 kDa species represented stable multi-protein complexes of Kcc2. We identified a set of novel structural, ion transporting, immune related and signaling protein interactors, that are present at both excitatory and inhibitory synapses, consistent with the proposed localization of Kcc2. These included spectrins, C1qa/b/c and the IP3 receptor. We also identified interactors more directly associated with phosphorylation; Akap5, Akap13, and Lmtk3. Finally, we used LC-MS/MS on the same purified endogenous plasma membrane Kcc2 to detect phosphorylation sites. We detected 11 sites with high confidence, including known and novel sites. Collectively our experiments demonstrate that Kcc2 is associated with components of the neuronal cytoskeleton and signaling molecules that may act to regulate transporter membrane trafficking, stability, and activity.

5.
J Neurosci ; 40(40): 7668-7687, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32859716

RESUMO

γ-frequency oscillations (30-120 Hz) in cortical networks influence neuronal encoding and information transfer, and are disrupted in multiple brain disorders. While synaptic inhibition is important for synchronization across the γ-frequency range, the role of distinct interneuronal subtypes in slow (<60 Hz) and fast γ states remains unclear. Here, we used optogenetics to examine the involvement of parvalbumin-expressing (PV+) and somatostatin-expressing (SST+) interneurons in γ oscillations in the mouse hippocampal CA3 ex vivo, using animals of either sex. Disrupting either PV+ or SST+ interneuron activity, via either photoinhibition or photoexcitation, led to a decrease in the power of cholinergically induced slow γ oscillations. Furthermore, photoexcitation of SST+ interneurons induced fast γ oscillations, which depended on both synaptic excitation and inhibition. Our findings support a critical role for both PV+ and SST+ interneurons in slow hippocampal γ oscillations, and further suggest that intense activation of SST+ interneurons can enable the CA3 circuit to generate fast γ oscillations.SIGNIFICANCE STATEMENT The generation of hippocampal γ oscillations depends on synchronized inhibition provided by GABAergic interneurons. Parvalbumin-expressing (PV+) interneurons are thought to play the key role in coordinating the spike timing of excitatory pyramidal neurons, but the role distinct inhibitory circuits in network synchronization remains unresolved. Here, we show, for the first time, that causal disruption of either PV+ or somatostatin-expressing (SST+) interneuron activity impairs the generation of slow γ oscillations in the ventral hippocampus ex vivo We further show that SST+ interneuron activation along with general network excitation is sufficient to generate high-frequency γ oscillations in the same preparation. These results affirm a crucial role for both PV+ and SST+ interneurons in hippocampal γ oscillation generation.


Assuntos
Região CA3 Hipocampal/fisiologia , Ritmo Gama , Interneurônios/fisiologia , Animais , Região CA3 Hipocampal/citologia , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/genética , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Somatostatina/genética , Somatostatina/metabolismo , Transmissão Sináptica
6.
Cell Rep ; 21(1): 70-83, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978485

RESUMO

Inhibitory synaptic transmission requires the targeting and stabilization of GABAA receptors (GABAARs) at synapses. The mechanisms responsible remain poorly understood, and roles for transmembrane accessory proteins have not been established. Using molecular, imaging, and electrophysiological approaches, we identify the tetraspanin LHFPL4 as a critical regulator of postsynaptic GABAAR clustering in hippocampal pyramidal neurons. LHFPL4 interacts tightly with GABAAR subunits and is selectively enriched at inhibitory synapses. In LHFPL4 knockout mice, there is a dramatic cell-type-specific reduction in GABAAR and gephyrin clusters and an accumulation of large intracellular gephyrin aggregates in vivo. While GABAARs are still trafficked to the neuronal surface in pyramidal neurons, they are no longer localized at synapses, resulting in a profound loss of fast inhibitory postsynaptic currents. Hippocampal interneuron currents remain unaffected. Our results establish LHFPL4 as a synapse-specific tetraspanin essential for inhibitory synapse function and provide fresh insights into the molecular make-up of inhibitory synapses.


Assuntos
Proteínas de Transporte/genética , Potenciais Pós-Sinápticos Inibidores/fisiologia , Proteínas de Membrana/genética , Subunidades Proteicas/genética , Receptores de GABA-A/genética , Sinapses/metabolismo , Tetraspaninas/genética , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Técnicas de Patch-Clamp , Agregados Proteicos , Subunidades Proteicas/metabolismo , Transporte Proteico , Células Piramidais/citologia , Células Piramidais/metabolismo , Ratos , Receptores de GABA-A/metabolismo , Tetraspaninas/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...