Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Med Inform ; 7(3): e14310, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31471962

RESUMO

BACKGROUND: With the rapid increase in utilization of imaging endpoints in multicenter clinical trials, the amount of data and workflow complexity have also increased. A Clinical Trial Imaging Management System (CTIMS) is required to comprehensively support imaging processes in clinical trials. The US Food and Drug Administration (FDA) issued a guidance protocol in 2018 for appropriate use of medical imaging in accordance with many regulations including the Good Clinical Practice (GCP) guidelines. Existing research on CTIMS, however, has mainly focused on functions and structures of systems rather than regulation and compliance. OBJECTIVE: We aimed to develop a comprehensive CTIMS to meet the current regulatory guidelines and various required functions. We also aimed to perform computerized system validation focusing on the regulatory compliance of our CTIMS. METHODS: Key regulatory requirements of CTIMS were extracted thorough review of many related regulations and guidelines including International Conference on Harmonization-GCP E6, FDA 21 Code of Federal Regulations parts 11 and 820, Good Automated Manufacturing Practice, and Clinical Data Interchange Standards Consortium. The system architecture was designed in accordance with these regulations by a multidisciplinary team including radiologists, engineers, clinical trial specialists, and regulatory medicine professionals. Computerized system validation of the developed CTIMS was performed internally and externally. RESULTS: Our CTIMS (AiCRO) was developed based on a two-layer design composed of the server system and the client system, which is efficient at meeting the regulatory and functional requirements. The server system manages system security, data archive, backup, and audit trail. The client system provides various functions including deidentification, image transfer, image viewer, image quality control, and electronic record. Computerized system validation was performed internally using a V-model and externally by a global quality assurance company to demonstrate that AiCRO meets all regulatory and functional requirements. CONCLUSIONS: We developed a Good Practice-compliant CTIMS-AiCRO system-to manage large amounts of image data and complexity of imaging management processes in clinical trials. Our CTIMS adopts and adheres to all regulatory and functional requirements and has been thoroughly validated.

2.
PLoS One ; 12(5): e0177379, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28545080

RESUMO

Radiologists have used margin characteristics based on routine visual analysis; however, the attenuation changes at the margin of the lesion on CT images have not been quantitatively assessed. We established a CT-based margin analysis method by comparing a target lesion with normal lung attenuation, drawing a slope to represent the attenuation changes. This approach was applied to patients with invasive mucinous adenocarcinoma (n = 40) or bacterial pneumonia (n = 30). Correlations among multiple regions of interest (ROIs) were obtained using intraclass correlation coefficient (ICC) values. CT visual assessment, margin and texture parameters were compared for differentiating the two disease entities. The attenuation and margin parameters in multiple ROIs showed excellent ICC values. Attenuation slopes obtained at the margins revealed a difference between invasive mucinous adenocarcinoma and pneumonia (P<0.001), and mucinous adenocarcinoma produced a sharply declining attenuation slope. On multivariable logistic regression analysis, pneumonia had an ill-defined margin (odds ratio (OR), 4.84; 95% confidence interval (CI), 1.26-18.52; P = 0.02), ground-glass opacity (OR, 8.55; 95% CI, 2.09-34.95; P = 0.003), and gradually declining attenuation at the margin (OR, 12.63; 95% CI, 2.77-57.51, P = 0.001). CT-based margin analysis method has a potential to act as an imaging parameter for differentiating invasive mucinous adenocarcinoma and bacterial pneumonia.


Assuntos
Adenocarcinoma Mucinoso/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Pneumonia Bacteriana/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma Mucinoso/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Pneumonia Bacteriana/diagnóstico , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...