Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(19): 21494-21504, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32315147

RESUMO

Cation segregation, particularly Sr segregation, toward a perovskite surface has a significant effect on the performance degradation of a solid oxide cell (solid oxide electrolysis/fuel cell). Among the number of key reasons generating the instability of perovskite oxide, surface-accumulated positively charged defects (oxygen vacancy, Vo··) have been considered as the most crucial drivers in strongly attracting negatively charged defects (SrA - site') toward the surface. Herein, we demonstrate the effects of a heterointerface on the redistribution of both positively and negatively charged defects for a reduction of Vo·· at a perovskite surface. We took Sm0.5Sr0.5CoO3-δ (SSC) as a model perovskite film and coated Gd0.1Ce0.9O2-δ (GDC) additionally onto the SSC film to create a heterointerface (GDC/SSC), resulting in an ∼11-fold reduction in a degradation rate of ∼8% at 650 °C and ∼10-fold higher surface exchange (kq) than a bare SSC film after 150 h at 650 °C. Using X-ray photoelectron spectroscopy and electron energy loss spectroscopy, we revealed a decrease in positively charged defects of Vo·· and transferred electrons in an SSC film at the GDC/SSC heterointerface, resulting in a suppression of negatively charged Sr (SrSm') segregation. Finally, the energetic behavior, including the charge transfer phenomenon, O p-band center, and oxygen vacancy formation energy calculated using the density functional theory, verified the effects of the heterointerface on the redistribution of the charged defects, resulting in a remarkable impact on the stability of perovskite oxide at elevated temperatures.

2.
ACS Appl Mater Interfaces ; 10(9): 8057-8065, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29443491

RESUMO

Strontium segregation at perovskite surfaces deteriorates the oxygen reduction reaction kinetics of cathodes and therefore the long-term stability of solid oxide fuel cells (SOFCs). For the systematic and quantitative assessment of the elastic energy in perovskite oxides, which is known to be one of the main origins for dopant segregation, we report the fractional free volume as a new descriptor for the elastic energy in the perovskite oxide system. To verify the fractional free volume model, three samples were prepared with different A-site dopants: La0.6Sr0.4CoO3-δ, La0.6Sr0.2Ca0.2CoO3-δ, and La0.6Ca0.4CoO3-δ. A combination of the theoretical calculations of the segregation energy and oxide formation energy and experimental measurements of the structural, chemical, and electrochemical degradation substantiated the validity of using the fractional free volume to predict the dopant segregation. Furthermore, the dopant segregation could be significantly suppressed by increasing the fractional free volume in the perovskite oxides with dopant substitution. Our results provide insight into dopant segregation from the elastic energy perspective and offer a design guideline for SOFC cathodes with enhanced stability at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...