Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SN Appl Sci ; 3(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35872663

RESUMO

The use of porous 3D scaffolds for the repair of bone nonunion and osteoporotic bone is currently an area of great interest. Using a combination of thermally-induced phase separation (TIPS) and 3D-plotting (3DP), we have generated hierarchical 3DP/TIPS scaffolds made of poly(lactic-co-glycolic acid) (PLGA) and nanohydroxyapatite (nHA). A full factorial design of experiments was conducted, in which the PLGA and nHA compositions were varied between 6-12% w/v and 10-40% w/w, respectively, totaling 16 scaffold formulations with an overall porosity ranging between 87%-93%. These formulations included an optimal scaffold design identified in our previous study. The internal structures of the scaffolds were examined using scanning electron microscopy and microcomputed tomography. Our optimal scaffold was seeded with MC3T3-E1 murine preosteoblastic cells and subjected to cell culture inside a tissue culture dish and a perfusion bioreactor. The results were compared to those of a commercial CellCeram™ scaffold with a composition of 40% ß-tricalcium phosphate and 60% hydroxyapatite (ß-TCP/HA). Media flow within the macrochannels of 3DP/TIPS scaffolds was modeled in COMSOL software in order to fine tune the wall shear stress. CyQUANT DNA assay was performed to assess cell proliferation. The normalized number of cells for the optimal scaffold was more than twofold that of CellCeram™ scaffold after two weeks of culture inside the bioreactor. Despite the substantial variability in the results, the observed improvement in cell proliferation upon culture inside the perfusion bioreactor (vs. static culture) demonstrated the role of macrochannels in making the 3DP/TIPS scaffolds a promising candidate for scaffold-based tissue engineering.

2.
ACS Appl Bio Mater ; 2(2): 685-696, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31942566

RESUMO

The limitations in the transport of oxygen, nutrients, and metabolic waste products pose a challenge to the development of bioengineered bone of clinically relevant size. This paper reports the design and characterization of hierarchical macro/microporous scaffolds made of poly(lactic-co-glycolic) acid and nanohydroxyapatite (PLGA/nHA). These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Macrochannels with diameters of ~300 µm, ~380 µm, and ~460 µm were generated by embedding porous 3D-plotted polyethylene glycol (PEG) inside PLGA/nHA/1,4-dioxane or PLGA/1,4-dioxane solutions, followed by PEG extraction using deionized (DI) water. We have used an I-optimal design of experiments (DoE) and the response surface analysis (JMP® software) to relate three responses (scaffold thickness, porosity, and modulus) to the four experimental factors affecting the scaffold macro/microstructures (e.g., PEG strand diameter, PLGA concentration, nHA content, and TIPS temperature). Our results indicated that a PEG strand diameter of ~380 µm, a PLGA concentration of ~10% w/v, a nHA content of ~10% w/w, and a TIPS temperature around -10°C could generate scaffolds with a porosity of ~90% and a modulus exceeding 4 MPa. This paper presents the steps for the I-optimal design of these scaffolds and reports on their macro/microstructures, characterized using scanning electron microscopy (SEM) and micro-computed tomography (micro-CT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...