Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954751

RESUMO

Lead chalcogenide colloidal quantum dots are one of the most promising materials to revolutionize the field of short-wavelength infrared optoelectronics due to their bandgap tunability and strong absorption. By self-assembling these quantum dots into ordered superlattices, mobilities approaching those of the bulk counterparts can be achieved while still retaining their original optical properties. The recent literature focused mostly on PbSe-based superlattices, but PbS quantum dots have several advantages, including higher stability. In this work, we demonstrate highly ordered 3D superlattices of PbS quantum dots with tunable thickness up to 200 nm and high coherent ordering, both in-plane and along the thickness. We show that we can successfully exchange the ligands throughout the film without compromising the ordering. The superlattices as the active material of an ion gel-gated field-effect transistor achieve electron mobilities up to 220 cm2 V-1 s-1. To further improve the device performance, we performed a postdeposition passivation with PbI2, which noticeably reduced the subthreshold swing making it reach the Boltzmann limit. We believe this is an important proof of concept showing that it is possible to overcome the problem of high trap densities in quantum dot superlattices enabling their application in optoelectronic devices.

2.
ACS Nano ; 18(21): 13496-13505, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752408

RESUMO

Concurrent structural and electronic transformations in VO2 thin films are of 2-fold importance: enabling fine-tuning of the emergent electrical properties in functional devices, yet creating an intricate interfacial domain structure of transitional phases. Despite the importance of understanding the structure of VO2 thin films, a detailed real-space atomic structure analysis in which the oxygen atomic columns are also resolved is lacking. Moreover, intermediate atomic structures have remained elusive due to the lack of robust atomically resolved quantitative analysis. Here, we directly resolve both V and O atomic columns and discover the presence of intermediate monoclinic (M2) phase nanolayers (less than 2 nm thick) in epitaxially grown VO2 films on a TiO2 (001) substrate, where the dominant part of VO2 undergoes a transition from the tetragonal (rutile) phase to the monoclinic M1 phase. Strain analysis suggests that the presence of the M2 phase is related to local strain gradients near the TiO2/VO2 interface. We unfold the crucial role of imaging the spatial configurations of the oxygen anions (in addition to V cations) by utilizing atomic-resolution electron microscopy. Our approach can be used to unravel the structural transitions in a wide range of correlated oxides, offering substantial implications for, e.g., optoelectronics and ferroelectrics.

3.
Nat Commun ; 15(1): 1428, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365898

RESUMO

Lead-free, silicon compatible materials showing large electromechanical responses comparable to, or better than conventional relaxor ferroelectrics, are desirable for various nanoelectromechanical devices and applications. Defect-engineered electrostriction has recently been gaining popularity to obtain enhanced electromechanical responses at sub 100 Hz frequencies. Here, we report record values of electrostrictive strain coefficients (M31) at frequencies as large as 5 kHz (1.04×10-14 m2/V2 at 1 kHz, and 3.87×10-15 m2/V2 at 5 kHz) using A-site and oxygen-deficient barium titanate thin-films, epitaxially integrated onto Si. The effect is robust and retained upon cycling upto 6 million times. Our perovskite films are non-ferroelectric, exhibit a different symmetry compared to stoichiometric BaTiO3 and are characterized by twin boundaries and nano polar-like regions. We show that the dielectric relaxation arising from the defect-induced features correlates well with the observed giant electrostriction-like response. These films show large coefficient of thermal expansion (2.36 × 10-5/K), which along with the giant M31 implies a considerable increase in the lattice anharmonicity induced by the defects. Our work provides a crucial step forward towards formulating guidelines to engineer large electromechanical responses even at higher frequencies in lead-free thin films.

4.
Adv Sci (Weinh) ; 11(1): e2304785, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988708

RESUMO

The possibility to engineer (GeTe)m (Sb2 Te3 )n phase-change materials to co-host ferroelectricity is extremely attractive. The combination of these functionalities holds great technological impact, potentially enabling the design of novel multifunctional devices. Here an experimental and theoretical study of epitaxial (GeTe)m (Sb2 Te3 )n with GeTe-rich composition is presented. These layered films feature a tunable distribution of (GeTe)m (Sb2 Te3 )1 blocks of different sizes. Breakthrough evidence of ferroelectric displacement in thick (GeTe)m (Sb2 Te3 )1 lamellae is provided. The density functional theory calculations suggest the formation of a tilted (GeTe)m slab sandwiched in GeTe-rich blocks. That is, the net ferroelectric polarization is confined almost in-plane, representing an unprecedented case between 2D and bulk ferroelectric materials. The ferroelectric behavior is confirmed by piezoresponse force microscopy and electroresistive measurements. The resilience of the quasi van der Waals character of the films, regardless of their composition, is also demonstrated. Hence, the material developed hereby gathers in a unique 2D platform the phase-change and ferroelectric switching properties, paving the way for the conception of innovative device architectures.

5.
Adv Sci (Weinh) ; 11(6): e2308578, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059800

RESUMO

A family of solids including crystalline phase change materials such as GeTe and Sb2 Te3 , topological insulators like Bi2 Se3, and halide perovskites such as CsPbI3 possesses an unconventional property portfolio that seems incompatible with ionic, metallic, or covalent bonding. Instead, evidence is found for a bonding mechanism characterized by half-filled p-bands and a competition between electron localization and delocalization. Different bonding concepts have recently been suggested based on quantum chemical bonding descriptors which either define the bonds in these solids as electron-deficient (metavalent) or electron-rich (hypervalent). This disagreement raises concerns about the accuracy of quantum-chemical bonding descriptors is showed. Here independent of the approach chosen, electron-deficient bonds govern the materials mentioned above is showed. A detailed analysis of bonding in electron-rich XeF2 and electron-deficient GeTe shows that in both cases p-electrons govern bonding, while s-electrons only play a minor role. Yet, the properties of the electron-deficient crystals are very different from molecular crystals of electron-rich XeF2 or electron-deficient B2 H6 . The unique properties of phase change materials and related solids can be attributed to an extended system of half-filled bonds, providing further arguments as to why a distinct nomenclature such as metavalent bonding is adequate and appropriate for these solids.

6.
Adv Mater ; : e2303502, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657490

RESUMO

In recent years, phase-change materials have gained importance in nanophotonics and optoelectronics. Sizable optical contrast and added degree of freedom from phase switching drive the use of phase-change materials in various optical devices with outstanding results and potential for real-world applications. The local crystallization/amorphization of phase-change materials and the corresponding reflectance tuning by the crystallized/amorphized region size have potential applications, for example, for future dynamic display devices. Although the resolution is much higher than in current display devices, the pixel sizes in those devices are limited by the locally switchable structure size. Here, the spot sizes are further reduced by using ion beams instead of laser beams, dramatically increasing pixel density, demonstrating superior resolution. In addition, the power to sputter away materials can be utilized in creating nanostructures with relative height differences and local contrast. The experiment focuses on one archetypal phase-change material, Sb2 Se3 , prepared by pulsed-laser deposition on a reflective gold substrate. This study demonstrates that structural colors can be produced and reflectance tuning can be achieved by focused ion beam milling/sputtering of phase-change materials at the nanoscale. Furthermore, the local structuring of phase-change materials by focused ion beam can produce high-pixel-density display devices with superior resolutions.

7.
Mater Horiz ; 10(11): 5235-5245, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37740285

RESUMO

Networks and systems which exhibit brain-like behavior can analyze information from intrinsically noisy and unstructured data with very low power consumption. Such characteristics arise due to the critical nature and complex interconnectivity of the brain and its neuronal network. We demonstrate a system comprising of multilayer hexagonal boron nitride (hBN) films contacted with silver (Ag), which can uniquely host two different self-assembled networks, which are self-organized at criticality (SOC). This system shows bipolar resistive switching between the high resistance state (HRS) and the low resistance state (LRS). In the HRS, Ag clusters (nodes) intercalate in the van der Waals gaps of hBN forming a network of tunnel junctions, whereas the LRS contains a network of Ag filaments. The temporal avalanche dynamics in both these states exhibit power-law scaling, long-range temporal correlation, and SOC. These networks can be tuned from one to another with voltage as a control parameter. For the first time, two different neural networks are realized in a single CMOS compatible, 2D material platform.

8.
ACS Appl Mater Interfaces ; 15(18): 22672-22683, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37122126

RESUMO

Over the past few decades, telluride-based chalcogenide multilayers, such as PbSeTe/PbTe, Bi2Te3/Sb2Te3, and Bi2Te3/Bi2Se3, were shown to be promising high-performance thermoelectric films. However, the stability of performance in operating environments, in particular, influenced by intermixing of the sublayers, has been studied rarely. In the present work, the nanostructure, thermal stability, and thermoelectric power factor of Sb2Te3/Ge1+xTe multilayers prepared by pulsed laser deposition are investigated by transmission electron microscopy and Seebeck coefficient/electrical conductivity measurements performed during thermal cycling. Highly textured Sb2Te3 films show p-type semiconducting behavior with superior power factor, while Ge1+xTe films exhibit n-type semiconducting behavior. The elemental mappings indicate that the as-deposited multilayers have well-defined layered structures. Upon heating to 210 °C, these layer structures are unstable against intermixing of sublayers; nanostructural changes occur on initial heating, even though the highest temperature is close to the deposition temperature. Furthermore, the diffusion is more extensive at domain boundaries leading to locally inclined structures there. The Sb2Te3 sublayers gradually dissolve into Ge1+xTe. This dissolution depends markedly on the relative Ge1+xTe film thickness. Rather, full dissolution occurs rapidly at 210 °C when the Ge1+xTe sublayer is substantially thicker than that of Sb2Te3, whereas the dissolution is very limited when the Ge1+xTe sublayer is substantially thinner. The resulting variations of the nanostructure influence the Seebeck coefficient and electrical conductivity and thus the power factor in a systematic manner. Our results shed light on a previously unreported correlation of the power factor with the nanostructural evolution of unstable telluride multilayers.

9.
Adv Mater ; 35(8): e2207364, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36308048

RESUMO

3D superlattices made of colloidal quantum dots are a promising candidate for the next generation of optoelectronic devices as they are expected to exhibit a unique combination of tunable optical properties and coherent electrical transport through minibands. While most of the previous work was performed on 2D arrays, the control over the formation of these systems is lacking, where limited long-range order and energetical disorder have so far hindered the potential of these metamaterials, giving rise to disappointing transport properties. Here, it is reported that nanoscale-level controlled ordering of colloidal quantum dots in 3D and over large areas allows the achievement of outstanding transport properties. The measured electron mobilities are the highest ever reported for a self-assembled solid of fully quantum-confined objects. This ultimately demonstrates that optoelectronic metamaterials with highly tunable optical properties (in this case in the short-wavelength infrared spectral range) and charge mobilities approaching that of bulk semiconductor can be obtained. This finding paves the way toward a new generation of optoelectronic devices.

10.
Nanoscale ; 15(1): 248-258, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472238

RESUMO

The current lack of insight into nanoparticle-cell membrane interactions hampers smart design strategies and thereby the development of effective nanodrugs. Quantitative and methodical approaches utilizing cell membrane models offer an opportunity to unravel particle-membrane interactions in a detailed manner under well controlled conditions. Here we use total internal reflection microscopy for real-time studies of the non-specific interactions between nanoparticles and a model cell membrane at 50 ms temporal resolution over a time course of several minutes. Maintaining a simple lipid bilayer system across conditions, adsorption and desorption were quantified as a function of biomolecular corona, particle size and fluid flow. The presence of a biomolecular corona reduced both the particle adsorption rate onto the membrane and the duration of adhesion, compared to pristine particle conditions. Particle size, on the other hand, was only observed to affect the adsorption rate. The introduction of flow reduced the number of adsorption events, but increased the residence time. Lastly, altering the composition of the membrane itself resulted in a decreased number of adsorption events onto negatively charged bilayers compared to neutral bilayers. Overall, a model membrane system offers a facile platform for real-time imaging of individual adsorption-desorption processes, revealing complex adsorption kinetics, governed by particle surface energy, size dependent interaction forces, flow and membrane composition.


Assuntos
Nanopartículas , Coroa de Proteína , Adsorção , Membrana Celular , Bicamadas Lipídicas , Membranas
11.
Nat Commun ; 13(1): 5990, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220818

RESUMO

The universe abounds with solid helium in polymorphic forms. Therefore, exploring the allotropes of helium remains vital to our understanding of nature. However, it is challenging to produce, observe and utilize solid helium on the earth because high-pressure techniques are required to solidify helium. Here we report the discovery of room-temperature two-dimensional solid helium through the diamond lattice confinement effect. Controllable ion implantation enables the self-assembly of monolayer helium atoms between {100} diamond lattice planes. Using state-of-the-art integrated differential phase contrast microscopy, we decipher the buckled tetragonal arrangement of solid helium monolayers with an anisotropic nature compressed by the robust diamond lattice. These distinctive helium monolayers, in turn, produce substantial compressive strains to the surrounded diamond lattice, resulting in a large-scale bandgap narrowing up to ~2.2 electron volts. This approach opens up new avenues for steerable manipulation of solid helium for achieving intrinsic strain doping with profound applications.

12.
Nanomaterials (Basel) ; 12(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630939

RESUMO

Integration of the prototypical GeSbTe (GST) ternary alloys, especially on the GeTe-Sb2Te3 tie-line, into non-volatile memory and nanophotonic devices is a relatively mature field of study. Nevertheless, the search for the next best active material with outstanding properties is still ongoing. This search is relatively crucial for embedded memory applications where the crystallization temperature of the active material has to be higher to surpass the soldering threshold. Increasing the Ge content in the GST alloys seems promising due to the associated higher crystallization temperatures. However, homogeneous Ge-rich GST in the as-deposited condition is thermodynamically unstable, and phase separation upon annealing is unavoidable. This phase separation reduces endurance and is detrimental in fully integrating the alloys into active memory devices. This work investigated the phase separation of Ge-rich GST alloys, specifically Ge5Sb2Te3 or GST523, into multiple (meta)stable phases at different length scales in melt-quenched bulk and annealed thin film. Electron microscopy-based techniques were used in our work for chemical mapping and elemental composition analysis to show the formation of multiple phases. Our results show the formation of alloys such as GST213 and GST324 in all length scales. Furthermore, the alloy compositions and the observed phase separation pathways agree to a large extent with theoretical results from density functional theory calculations.

13.
Adv Mater ; 34(30): e2201353, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485142

RESUMO

Lead halide perovskite nanocrystals are highly attractive for next-generation optoelectronics because they are easy to synthesize and offer great compositional and morphological tunability. However, the replacement of lead by tin for sustainability reasons is hampered by the unstable nature of Sn2+ oxidation state and by an insufficient understanding of the chemical processes involved in the synthesis. Here, an optimized synthetic route is demonstrated to obtain stable, tunable, and monodisperse CsSnI3 nanocrystals, exhibiting well-defined excitonic peaks. Similar to lead halide perovskites, these nanocrystals are prepared by combining a precursor mixture of SnI2 , oleylamine, and oleic acid, with a Cs-oleate precursor. Among the products, nanocrystals with 10 nm lateral size in the γ-orthorhombic phase prove to be the most stable. To achieve such stability, an excess of precursor SnI2 as well as substoichiometric Sn:ligand ratios are key. Structural, compositional, and optical investigations complemented by first-principle density functional theory calculations confirm that nanocrystal nucleation and growth follow the formation of (R-NH3 + )2 SnI4 nanosheets, with R = C18 H35 . Under specific synthetic conditions, stable mixtures of 3D nanocrystals CsSnI3 and 2D nanosheets (Ruddlesden-Popper (R-NH3 + )2 Csn -1 Snn I3 n +1 with n > 1) are obtained. These results set a path to exploiting the high potential of Sn halide perovskite nanocrystals for opto-electronic applications.

14.
ACS Appl Mater Interfaces ; 14(11): 13593-13600, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266381

RESUMO

Phase change materials, with more than one reflectance and resistance states, have been a subject of interest in the fields of phase change memories and nanophotonics. Although most current research focuses on rather complex phase change alloys, e.g., Ge2Sb2Te5, recently, monatomic antimony thin films have aroused a lot of interest. One prominent attractive feature is its simplicity, giving fewer reliability issues like segregation and phase separation. However, phase transformation and crystallization properties of ultrathin Sb thin films must be understood to fully incorporate them into future memory and nanophotonics devices. Here, we studied the thickness-dependent crystallization behavior of pulsed laser-deposited ultrathin Sb thin films by employing dynamic ellipsometry. We show that the crystallization temperature and phase transformation speed of as-deposited amorphous Sb thin films are thickness-dependent and can be precisely tuned by controlling the film thickness. Thus, crystallization temperature tuning by thickness can be applied to future memory and nanophotonic devices. As a proof of principle, we designed a heterostructure device with three Sb layers of varying thicknesses with distinct crystallization temperatures. Measurements and simulation results show that it is possible to address these layers individually and produce distinct and multiple reflectance profiles in a single device. In addition, we show that the immiscible nature of Sb and GaSb could open up possible heterostructure device designs with high stability after melt-quench and increased crystallization temperature. Our results demonstrate that the thickness-dependent phase transformation and crystallization dynamics of ultrathin Sb thin films have attractive features for future memory and nanophotonic devices.

15.
Adv Sci (Weinh) ; 9(12): e2105722, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182039

RESUMO

Indium antimonide (InSb) nanowires are used as building blocks for quantum devices because of their unique properties, that is, strong spin-orbit interaction and large Landé g-factor. Integrating InSb nanowires with other materials could potentially unfold novel devices with distinctive functionality. A prominent example is the combination of InSb nanowires with superconductors for the emerging topological particles research. Here, the combination of the II-VI cadmium telluride (CdTe) with the III-V InSb in the form of core-shell (InSb-CdTe) nanowires is investigated and potential applications based on the electronic structure of the InSb-CdTe interface and the epitaxy of CdTe on the InSb nanowires are explored. The electronic structure of the InSb-CdTe interface using density functional theory is determined and a type-I band alignment is extracted with a small conduction band offset ( ⩽0.3 eV). These results indicate the potential application of these shells for surface passivation or as tunnel barriers in combination with superconductors. In terms of structural quality, it is demonstrated that the lattice-matched CdTe can be grown epitaxially on the InSb nanowires without interfacial strain or defects. These shells do not introduce disorder to the InSb nanowires as indicated by the comparable field-effect mobility measured for both uncapped and CdTe-capped nanowires.

16.
Nanoscale ; 13(48): 20683-20691, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34878478

RESUMO

Scanning transmission electron microscopy (STEM) is the most widespread adopted tool for atomic scale characterization of two-dimensional (2D) materials. However, damage free imaging of 2D materials with electrons has remained problematic even with powerful low-voltage 60 kV-microscopes. An additional challenge is the observation of light elements in combination with heavy elements, particularly when recording fast dynamical phenomena. Here, we demonstrate that 2D WS2 suffers from electron radiation damage during 30 kV-STEM imaging, and we capture beam-induced defect dynamics in real-time by atomic electrostatic potential imaging using integrated differential phase contrast (iDPC)-STEM. The fast imaging of atomic electrostatic potentials with iDPC-STEM reveals the presence and motion of single sulfur atoms near defects and edges in WS2 that are otherwise invisible at the same imaging dose at 30 kV with conventional annular dark-field STEM, and has a vast speed and data processing advantage over electron detector camera based STEM techniques like electron ptychography.

17.
J Chem Phys ; 155(21): 214701, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879663

RESUMO

The wetting state of surfaces can be rendered to a highly hydrophobic state by the deposition of hydrophilic gas phase synthesized Ag nanoparticles (NPs). The aging of Ag NPs leads to an increase in their size, which is also associated with the presence of Ag adatoms on the surface between the NPs that have a strong effect on the wetting processes. Furthermore, surface airborne hydrocarbons were removed by UV-ozone treatment, providing deeper insight into the apparent mobility of the NPs on different surfaces and their subsequent ripening and aging. In addition, the UV-ozone treatment revealed the presence of adatoms during the magnetron sputtering process. This surface treatment lowers the initial contact angle of the substrates and facilitates the mobility of Ag NPs and adatoms on the surface of substrates. Adatoms co-deposited on clean high surface energy substrates will nucleate on Ag NPs that will remain closely spherical and preserve the pinning effect due to the water nanomeniscus. If the adatoms are co-deposited on a UV-ozone cleaned low surface energy substrate, their mobility is restricted, and they will nucleate in two-dimensional islands and/or nanoclusters on the surface instead of connecting to existing Ag NPs. This growth results in a rough surface without overhangs, where the wetting state is reversed from hydrophobic to hydrophilic. Finally, different material surfaces of transmission electron microscopy grids revealed strong differences in the sticking coefficient for the Ag NPs, suggesting another factor that can strongly affect their wetting properties.

18.
Interact Cardiovasc Thorac Surg ; 33(6): 986-991, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34282456

RESUMO

OBJECTIVES: The liquid-solid interactions have attracted broad interest since solid surfaces can either repel or attract fluids, configuring a wide spectrum of wetting states (from superhydrophilicity to superhydrophobicity). Since the blood-artificial surface interaction of bileaflet mechanical heart valves essentially represents a liquid-solid interaction, we analysed the thrombogenicity of mechanical heart valve prostheses from innovative perspectives. The aim of the present study was to modify the surface wettability of standard St. Jude Medical Regent™ occluders. METHODS: Four pyrolytic carbon occluders were irradiated by means of ultra-short pulse laser, to create 4 different nanotextures (A-D), the essential prerequisite to achieve superhydrophobicity. The static surface wettability of the occluders was qualified by the contact angle (θ) of 2 µl of purified water, using the sessile drop technique. The angle formed between the liquid-solid and the liquid-vapour interface was the contact angle and was obtained by analysing the droplet images captured by a camera. The morphology of the occluders was characterized and analysed by a scanning electron microscope at different magnifications. RESULTS: The scanning electron microscope analysis of the textures revealed 2 different configurations of the pillars since A and B showed well-rounded shaped tops and C and D flat tops. The measured highest contact angles were comprised between 108.1° and 112.7°, reflecting an improved hydrophobicity of the occluders. All the textures exhibited, to different extents, an orientation (horizontal or vertical), which was strictly related to the observed anisotropy. CONCLUSIONS: In this very early phase of our research, we were able to demonstrate that the intrinsic wettability of pyrolytic carbon occluders can be permanently modified, increasing the water repellency.


Assuntos
Próteses Valvulares Cardíacas , Molhabilidade , Humanos , Lasers
19.
Science ; 372(6542): 630-635, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33858991

RESUMO

Unconventional ferroelectricity exhibited by hafnia-based thin films-robust at nanoscale sizes-presents tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching remains controversial. We investigated a La0.67Sr0.33MnO3/Hf0.5Zr0.5O2 capacitor interfaced with various top electrodes while performing in situ electrical biasing using atomic-resolution microscopy with direct oxygen imaging as well as with synchrotron nanobeam diffraction. When the top electrode is oxygen reactive, we observe reversible oxygen vacancy migration with electrodes as the source and sink of oxygen and the dielectric layer acting as a fast conduit at millisecond time scales. With nonreactive top electrodes and at longer time scales (seconds), the dielectric layer also acts as an oxygen source and sink. Our results show that ferroelectricity in hafnia-based thin films is unmistakably intertwined with oxygen voltammetry.

20.
ACS Appl Mater Interfaces ; 13(4): 5195-5207, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470785

RESUMO

The recent development of phase transfer ligand exchange methods for PbS quantum dots (QD) has enhanced the performance of quantum dots solar cells and greatly simplified the complexity of film deposition. However, the dispersions of PbS QDs (inks) used for film fabrication often suffer from colloidal instability, which hinders large-scale solar cell production. In addition, the wasteful spin-coating method is still the main technique for the deposition of QD layer in solar cells. Here, we report a strategy for scalable solar cell fabrication from highly stable PbS QD inks. By dispersing PbS QDs capped with CH3NH3PbI3 in 2,6-difluoropyridine (DFP), we obtained inks that are colloidally stable for more than 3 months. Furthermore, we demonstrated that DFP yields stable dispersions even of large diameter PbS QDs, which are of great practical relevance owing to the extended coverage of the near-infrared region. The optimization of blade-coating deposition of DFP-based inks enabled the fabrication of PbS QD solar cells with power conversion efficiencies of up to 8.7%. It is important to underline that this performance is commensurate with the devices made by spin coating of inks with the same ligands. A good shelf life-time of these inks manifests itself in the comparatively high photovoltaic efficiency of 5.8% obtained with inks stored for more than 120 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...