Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(9): 1237-1241, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736188

RESUMO

GM3 is a simple monosialylated ganglioside (NeuAcα(2-3)Galß(1-4)Glcß1-1'-ceramide). Its aberrant expression in adipocytes is involved in a variety of physiological and pathological processes in diabetes mellitus and obesity. GM3 is exposed on the outer surface of cell membranes and is strongly associated with type 2 diabetes and insulin resistance. Exogenously added GM3 promotes neurite outgrowth in a variety of different neuroblastoma cell lines. Neurite outgrowth is a key process in the development of functional neuronal circuits and neuro-regeneration following nerve injury. Therefore, regulating GM3 levels in nerve tissues might be a potential treatment method for these disorders. Here, we demonstrate the comprehensive synthesis of stereoisomeric GM3s and compare their physicochemical properties with those of natural GM3 and diastereomers of sphingolipids in GM3 to examine the enhancement of biological activity. l-erythro-GM3 was confirmed to increase neurite outgrowth, providing valuable insights for potential neuro-regenerative treatments.

2.
J Biol Chem ; 299(5): 104684, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030501

RESUMO

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of l-serine (l-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize l-alanine (l-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from l-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only l-Ala and Gly but also l-homoserine, in addition to l-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, l-threonine, and determined the structures at 1.40 to 1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.


Assuntos
Serina C-Palmitoiltransferase , Sphingobacterium , Humanos , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Serina/química , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Sphingobacterium/enzimologia , Esfingolipídeos/metabolismo , Especificidade por Substrato
3.
Chirality ; 32(3): 308-313, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31965611

RESUMO

Enantiomers or diastereomers of chiral bioactive compounds often exhibit different biological and toxicological properties. Here, we report the efficient synthesis of four stereoisomers of sphingosine and derivatization of unique chiral ceramides through a combinatorial chemistry by solid-phase activated resin ester. In addition, to test the effectivity of stereochemistry of ceramide, we demonstrated a cell-based assay of sphingomyelin synthase inhibition in the presence ofchiral unique ceramides, which suggested that libraries of this sort will be a rich source of biologically active synthetic molecules.


Assuntos
Ceramidas/química , Ceramidas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Animais , Ceramidas/síntese química , Inibidores Enzimáticos/síntese química , Fibroblastos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos Knockout , Esfingosina/química , Estereoisomerismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...