Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Stroke Cerebrovasc Dis ; 29(1): 104502, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31744764

RESUMO

BACKGROUND: Cerebral dopamine neurotrophic factor plays a critical role in repairing and maintaining healthy neurons in pathological conditions such as stroke. However, the association between cerebral dopamine neurotrophic factor expression and stroke has only recently been investigated in preclinical models and is rarely described in human studies. OBJECTIVES: The aims of this were to examine neurological alterations mirrored in human blood platelet cerebral dopamine neurotrophic factor gene expression. Cerebral dopamine neurotrophic factor is expressed in both the central nervous system and peripheral blood. Blood platelets are often used to model neuronal behavior because they exhibit biochemical impairments similar to brain tissues of patients with neurological disorders. METHODS: RNA was isolated from platelets and cDNA was synthesized to quantify cerebral dopamine neurotrophic factor gene expression of 36 stroke patients compared to 72 healthy aged-matched controls through real-time PCR. Further grouping analyses of data with regard to age, sex, and medication history were performed. RESULTS: Cerebral dopamine neurotrophic factor gene expression was significantly reduced in stroke patients relative to control subjects (P = .013). Subsequent analysis revealed a significant difference in expression between males and females within the control group (P = .026). Decreased cerebral dopamine neurotrophic factor expression was only observed in male stroke patients compared to their sex-matched controls (P = .008). Grouping stroke patients based on their medication history did not significantly alter cerebral dopamine neurotrophic factor gene expression. CONCLUSIONS: Further studies investigating cerebral dopamine neurotrophic factor expression could be directed towards the interplay of the central nervous system, hematopoietic derivatives, and utilizing cerebral dopamine neurotrophic factor as a therapeutic tool.


Assuntos
Plaquetas/metabolismo , Fatores de Crescimento Neural/sangue , Acidente Vascular Cerebral/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Crescimento Neural/genética , RNA Mensageiro/sangue , Fatores Sexuais , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/genética , Adulto Jovem
2.
Front Behav Neurosci ; 12: 302, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618660

RESUMO

PAOPA, a potent analog of prolyl-leucyl-glycinamide, has shown therapeutic potential at the preclinical stage for dopaminergic related illnesses, including animal models of schizophrenia, Parkinson's disease and haloperidol-induced extrapyramidal movement disorders. PAOPA's unique allosteric mechanism and dopamine D2 receptor specificity provide a unique composition of properties for the development of potential therapeutics for neuropsychiatric illnesses. We sought to investigate PAOPA's therapeutic prospects across the spectrum of schizophrenia-like symptoms represented in the established phencyclidine-induced rat model of schizophrenia, (5 mg/kg PCP twice daily for 7 days, followed by 7 days of drug withdrawal). PAOPA was assessed for its effect on brain metabolic activity and across a battery of behavioral tests including, hyperlocomotion, social withdrawal, sensorimotor gating, and novel object recognition. PAOPA showed therapeutic efficacy in behavioral paradigms representing the negative (social withdrawal) and cognitive-like (novel object recognition) symptoms of schizophrenia. Interestingly, some behavioral indices associated with the positive symptoms of schizophrenia that were ameliorated in PAOPA's prior examination in the amphetamine-sensitized model of schizophrenia were not ameliorated in the PCP model; suggesting that the deficits induced by amphetamine and PCP-while phenotypically similar-are mechanistically different and that PAOPA's effects are restricted to certain mechanisms and systems. These studies provide insight on the potential use of PAOPA for the safe and effective treatment of schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...