Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(13): e0055722, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35699439

RESUMO

Branched-chain higher alcohols (BCHAs), or fusel alcohols, including isobutanol, isoamyl alcohol, and active amyl alcohol, are useful compounds in several industries. The yeast Saccharomyces cerevisiae can synthesize these compounds via the metabolic pathways of branched-chain amino acids (BCAAs). Branched-chain amino acid aminotransaminases (BCATs) are the key enzymes for BCHA production via the Ehrlich pathway of BCAAs. BCATs catalyze a bidirectional transamination reaction between branched-chain α-keto acids (BCKAs) and BCAAs. In S. cerevisiae, there are two BCAT isoforms, Bat1 and Bat2, which are encoded by the genes BAT1 and BAT2. Although many studies have shown the effects of deletion or overexpression of BAT1 and BAT2 on BCHA production, there have been no reports on the enhancement of BCHA production by functional variants of BCATs. Here, to improve BCHA productivity, we designed variants of Bat1 and Bat2 with altered enzyme activity by using in silico computational analysis: the Gly333Ser and Gly333Trp Bat1 and corresponding Gly316Ser and Gly316Trp Bat2 variants, respectively. When expressed in S. cerevisiae cells, most of these variants caused a growth defect in minimal medium. Interestingly, the Gly333Trp Bat1 and Gly316Ser Bat2 variants achieved 18.7-fold and 17.4-fold increases in isobutanol above that for the wild-type enzyme, respectively. The enzyme assay revealed that the catalytic activities of all four BCAT variants were lower than that of the wild-type enzyme. Our results indicate that the decreased BCAT activity enhanced BCHA production by reducing BCAA biosynthesis, which occurs via a pathway that directly competes with BCHA production. IMPORTANCE Recently, several studies have attempted to increase the production of branched-chain higher alcohols (BCHAs) in the yeast Saccharomyces cerevisiae. The key enzymes for BCHA biosynthesis in S. cerevisiae are the branched-chain amino acid aminotransaminases (BCATs) Bat1 and Bat2. Deletion or overexpression of the genes encoding BCATs has an impact on the production of BCHAs; however, amino acid substitution variants of Bat1 and Bat2 that could affect enzymatic properties-and ultimately BCHA productivity-have not been fully studied. By using in silico analysis, we designed variants of Bat1 and Bat2 and expressed them in yeast cells. We found that the engineered BCATs decreased catalytic activities and increased BCHA production. Our approach provides new insight into the functions of BCATs and will be useful in the future construction of enzymes optimized for high-level production of BCHAs.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos de Cadeia Ramificada/metabolismo , Etanol/metabolismo , Proteínas Mitocondriais , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transaminases/genética , Transaminases/metabolismo
2.
Appl Microbiol Biotechnol ; 105(21-22): 8059-8072, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34622336

RESUMO

Branched-chain amino acid aminotransferase (BCAT) catalyzes bidirectional transamination in the cell between branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and branched-chain α-keto acids (BCKAs; α-ketoisovalerate, α-ketoisocaproate, and α-keto-ß-methylvalerate). Eukaryotic cells contain two types of paralogous BCATs: mitochondrial BCAT (BCATm) and cytosolic BCAT (BCATc). Both isozymes have identical enzymatic functions, so they have long been considered to perform similar physiological functions in the cells. However, many studies have gradually revealed the differences in physiological functions and regulatory mechanisms between them. In this article, we present overviews of BCATm and BCATc in both yeast and human. We also introduce BCAT variants found natively or constructed artificially, which could have significant implications for research into the relationship between the primary structures and protein functions of BCATs. KEY POINTS: • BCAT catalyzes bidirectional transamination in the cell between BCAAs and BCKAs. • BCATm and BCATc are different in the metabolic roles and regulatory mechanisms. • BCAT variants offer insight into a relationship between the structure and function.


Assuntos
Isoenzimas , Saccharomyces cerevisiae , Aminoácidos de Cadeia Ramificada , Citosol , Humanos , Isoenzimas/genética , Saccharomyces cerevisiae/genética , Transaminases/genética
3.
Appl Environ Microbiol ; 87(15): e0060021, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33990312

RESUMO

Homocitrate synthase (HCS) catalyzes the aldol condensation of 2-oxoglutarate (2-OG) and acetyl coenzyme A (AcCoA) to form homocitrate, which is the first enzyme of the lysine biosynthetic pathway in the yeast Saccharomyces cerevisiae. The HCS activity is tightly regulated via feedback inhibition by the end product lysine. Here, we designed a feedback inhibition-insensitive HCS of S. cerevisiae (ScLys20) for high-level production of lysine in yeast cells. In silico docking of the substrate 2-OG and the inhibitor lysine to ScLys20 predicted that the substitution of serine with glutamate at position 385 would be more suitable for desensitization of the lysine feedback inhibition than the substitution from serine to phenylalanine in the already known Ser385Phe variant. Enzymatic analysis revealed that the Ser385Glu variant is far more insensitive to feedback inhibition than the Ser385Phe variant. We also found that the lysine contents in yeast cells expressing the Ser385Glu variant were 4.62- and 1.47-fold higher than those of cells expressing the wild-type HCS and Ser385Phe variant, respectively, due to the extreme desensitization to feedback inhibition. In this study, we obtained highly feedback inhibition-insensitive HCS using in silico docking and enzymatic analysis. Our results indicate that the rational engineering of HCS for feedback inhibition desensitization by lysine could be useful for constructing new yeast strains with higher lysine productivity. IMPORTANCE A traditional method for screening toxic analogue-resistant mutants has been established for the breeding of microbes that produce high levels of amino acids, including lysine. However, another efficient strategy is required to further improve their productivity. Homocitrate synthase (HCS) catalyzes the first step of lysine biosynthesis in the yeast Saccharomyces cerevisiae, and its activity is subject to feedback inhibition by lysine. Here, in silico design of a key enzyme that regulates the biosynthesis of lysine was utilized to increase the productivity of lysine. We designed HCS for the high-level production of lysine in yeast cells by in silico docking simulation. The engineered HCS exhibited much less sensitivity to lysine and conferred higher production of lysine than the already known variant obtained by traditional breeding. The combination of in silico design and experimental analysis of a key enzyme will contribute to advances in metabolic engineering for the construction of industrial microorganisms.


Assuntos
Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Oxo-Ácido-Liases/metabolismo , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Retroalimentação Fisiológica , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Engenharia Metabólica , Simulação de Acoplamento Molecular , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/genética , Saccharomyces cerevisiae/genética
4.
Appl Microbiol Biotechnol ; 104(18): 7915-7925, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776205

RESUMO

In the yeast Saccharomyces cerevisiae, the mitochondrial branched-chain amino acid (BCAA) aminotransferase Bat1 plays an important role in the synthesis of BCAAs (valine, leucine, and isoleucine). Our upcoming study (Large et al. bioRχiv. 10.1101/2020.06.26.166157, Large et al. 2020) will show that the heterozygous tetraploid beer yeast strain, Wyeast 1056, which natively has a variant causing one amino acid substitution of Ala234Asp in Bat1 on one of the four chromosomes, produced higher levels of BCAA-derived fusel alcohols in the brewer's wort medium than a derived strain lacking this mutation. Here, we investigated the physiological role of the A234D variant Bat1 in S. cerevisiae. Both bat1∆ and bat1A234D cells exhibited the same phenotypes relative to the wild-type Bat1 strain-namely, a repressive growth rate in the logarithmic phase; decreases in intracellular valine and leucine content in the logarithmic and stationary growth phases, respectively; an increase in fusel alcohol content in culture medium; and a decrease in the carbon dioxide productivity. These results indicate that amino acid change from Ala to Asp at position 234 led to a functional impairment of Bat1, although homology modeling suggests that Asp234 in the variant Bat1 did not inhibit enzymatic activity directly. KEY POINTS: • Yeast cells expressing Bat1A234D exhibited a slower growth phenotype. • The Val and Leu levels were decreased in yeast cells expressing Bat1A234D. • The A234D substitution causes a loss-of-function in Bat1. • The A234D substitution in Bat1 increased fusel alcohol production in yeast cells.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos de Cadeia Ramificada , Cerveja , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...