Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766683

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver pathology worldwide. In mice and humans, NAFLD progression is characterized by the appearance of TREM2-expressing macrophages in the liver. However, their mechanistic contributions to disease progression have not been completely elucidated. Here, we show that TREM2+ macrophages prevent the generation of a pro-inflammatory response elicited by LPS-laden lipoproteins in vitro. Further, Trem2 expression regulates bone-marrow-derived macrophages (BMDMs) and Kupffer cell capacity to phagocyte apoptotic cells in vitro, which is dependent on CD14 activation. In line with this, loss of Trem2 resulted in an increased pro-inflammatory response, which ultimately aggravated liver fibrosis in murine models of NAFLD. Similarly, in a human NAFLD cohort, plasma levels of TREM2 were increased and hepatic TREM2 expression was correlated with higher levels of liver triglycerides and the acquisition of a fibrotic gene signature. Altogether, our results suggest that TREM2+ macrophages have a protective function during the progression of NAFLD, as they are involved in the processing of pro-inflammatory lipoproteins and phagocytosis of apoptotic cells and, thereby, are critical contributors for the re-establishment of liver homeostasis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Macrófagos/metabolismo , Apoptose , Glicoproteínas de Membrana/genética , Receptores Imunológicos
2.
Hepatol Commun ; 4(10): 1441-1458, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33024915

RESUMO

Myeloperoxidase (MPO) activity has been associated with the metabolic syndrome, cardiovascular and liver disease. Here, we evaluate the therapeutic potential of MPO inhibition on nonalcoholic steatohepatitis (NASH) and NASH-induced fibrosis, the main determinant of outcomes. MPO plasma levels were elevated in patients with nonalcoholic fatty liver disease (NAFLD) compared with healthy controls. In a second cohort, hepatic MPO messenger RNA expression correlated with higher body mass index and hemoglobin A1c, both being risk factors for NAFLD. We could establish by immunohistochemistry that MPO-positive cells were recruited to the liver in various mouse models of fibrogenic liver injury, including bile duct ligation, carbon tetrachloride (CCl4) treatment, spontaneous liver fibrogenesis in multidrug resistance 2 knockout (MDR2 KO) mice, and NASH-inducing diet. Comparison of MPO-deficient mice and their wild-type littermates exposed to a high-caloric diet revealed that MPO deficiency protects against NASH-related liver injury and fibrosis. In line with this, hepatic gene expression analysis demonstrated a MPO-dependent activation of pathways relevant for wound healing, inflammation, and cell death in NASH. MPO deficiency did not affect NAFLD-independent liver injury and fibrosis in MDR2 KO or CCl4-treated mice. Finally, we treated wild-type mice exposed to NASH-inducing diet with an oral MPO inhibitor. Pharmacological MPO inhibition not only reduced markers of MPO-mediated liver damage, serum alanine aminotransferase levels, and hepatic steatosis, but also significantly decreased NASH-induced liver fibrosis. MPO inhibitor treatment, but not MPO deficiency, significantly altered gut microbiota including a significant expansion of Akkermansia muciniphila. Conclusions: MPO specifically promotes NASH-induced liver fibrosis. Pharmacological MPO inhibition attenuates NASH progression and NASH-induced liver fibrosis in mice and is associated with beneficial changes of intestinal microbiota.

3.
Nutrients ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092056

RESUMO

Dietary fibers are fermented by gut bacteria into the major short chain fatty acids (SCFAs) acetate, propionate, and butyrate. Generally, fiber-rich diets are believed to improve metabolic health. However, recent studies suggest that long-term supplementation with fibers causes changes in hepatic bile acid metabolism, hepatocyte damage, and hepatocellular cancer in dysbiotic mice. Alterations in hepatic bile acid metabolism have also been reported after cold-induced activation of brown adipose tissue. Here, we aim to investigate the effects of short-term dietary inulin supplementation on liver cholesterol and bile acid metabolism in control and cold housed specific pathogen free wild type (WT) mice. We found that short-term inulin feeding lowered plasma cholesterol levels and provoked cholestasis and mild liver damage in WT mice. Of note, inulin feeding caused marked perturbations in bile acid metabolism, which were aggravated by cold treatment. Our studies indicate that even relatively short periods of inulin consumption in mice with an intact gut microbiome have detrimental effects on liver metabolism and function.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Inulina/efeitos adversos , Fígado/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/sangue , Bilirrubina/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colesterol/análise , Colesterol/sangue , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Abrigo para Animais , Inulina/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...