Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273516

RESUMO

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.


Assuntos
Tentilhões , Muscidae , Parasitos , Animais , Humanos , Tentilhões/parasitologia , Equador
2.
Evolution ; 77(12): 2533-2546, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37671423

RESUMO

Divergent natural selection should lead to adaptive radiation-that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of "adaptive landscapes," yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin's ground finches (Geospiza spp.) at an intensively studied site on Santa Cruz (Galápagos) to estimate individual apparent lifespan in relation to beak traits. We use these estimates to model a multi-species fitness landscape, which we also convert to a formal adaptive landscape. We then assess the correspondence between estimated fitness peaks and observed phenotypes for each of five phenotypic modes (G. fuliginosa, G. fortis [small and large morphotypes], G. magnirostris, and G. scandens). The fitness and adaptive landscapes show 5 and 4 peaks, respectively, and, as expected, the adaptive landscape was smoother than the fitness landscape. Each of the five phenotypic modes appeared reasonably close to the corresponding fitness peak, yet interesting deviations were also documented and examined. By estimating adaptive landscapes in an ongoing adaptive radiation, our study demonstrates their utility as a quantitative tool for exploring and predicting adaptive radiation.


Assuntos
Tentilhões , Passeriformes , Animais , Tentilhões/genética , Seleção Genética , Fenótipo , Equador , Bico
3.
Ecol Evol ; 12(10): e9399, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36225827

RESUMO

The term terroir is used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or "site") is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η 2 = 0.42) and body size (η 2 = 0.43), with a smaller contribution for beak shape (η 2 = 0.05) and body shape (η 2 = 0.12), but still higher compared to year and site-by-year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft-emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.

4.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34878103

RESUMO

The invasive avian vampire fly (Philornis downsi, Diptera: Muscidae) is considered one of the greatest threats to the endemic avifauna of the Galápagos Islands. The fly larvae parasitize nearly every passerine species, including Darwin's finches. Most P. downsi research to date has focused on the effects of the fly on avian host fitness and mitigation methods. A lag in research related to the genetics of this invasion demonstrates, in part, the need to develop full-scale genomic resources with which to address further questions within this system. In this study, an adult female P. downsi was sequenced to generate a high-quality genome assembly. We examined various features of the genome (e.g., coding regions and noncoding transposable elements) and carried out comparative genomics analysis against other dipteran genomes. We identified lists of gene families that are significantly expanding or contracting in P. downsi that are related to insecticide resistance, detoxification, and counter defense against host immune responses. The P. downsi genome assembly provides an important resource for studying the molecular basis of successful invasion in the Galápagos and the dynamics of its population across multiple islands. The findings of significantly changing gene families associated with insecticide resistance and immune responses highlight the need for further investigations into the role of different gene families in aiding the fly's successful invasion. Furthermore, this genomic resource provides a necessary tool to better inform future research studies and mitigation strategies aimed at minimizing the fly's impact on Galápagos birds.


Assuntos
Tentilhões , Muscidae , Parasitos , Animais , Equador/epidemiologia , Feminino , Tentilhões/genética , Tentilhões/parasitologia , Humanos , Larva , Muscidae/genética
5.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190546, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32654644

RESUMO

Preference divergence is thought to contribute to reproductive isolation. Ecology can alter the way selection acts on female preferences, making them most likely to diverge when ecological conditions vary among populations. We present a novel mechanism for ecologically dependent sexual selection, termed 'the ecological stage' to highlight its ecological dependence. Our hypothesized mechanism emphasizes that males and females interact over mating in a specific ecological context, and different ecological conditions change the costs and benefits of mating interactions, selecting for different preferences in distinct environments and different male traits, especially when traits are condition dependent. We test key predictions of this mechanism in a sympatric three-spine stickleback species pair. We used a maternal half-sib split-clutch design for both species, mating females to attractive and unattractive males and raising progeny on alternate diets that mimic the specialized diets of the species in nature. We estimated the benefits of mate choice for an indicator trait (male nuptial colour) by measuring many fitness components across the lifetimes of both sons and daughters from these crosses. We analysed fitness data using a combination of aster and mixed models. We found that many benefits of mating with high-colour males depended on both species and diet. These results support the ecological stage hypothesis for sticklebacks. Finally, we discuss the potential role of this mechanism for other taxa and highlight its ability to enhance reproductive isolation as speciation proceeds, thus facilitating the evolution of strong reproductive isolation. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Assuntos
Especiação Genética , Preferência de Acasalamento Animal , Isolamento Reprodutivo , Smegmamorpha/genética , Simpatria/genética , Animais , Feminino , Masculino
6.
Proc Biol Sci ; 286(1916): 20192290, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31795872

RESUMO

Disruptive natural selection within populations exploiting different resources is considered to be a major driver of adaptive radiation and the production of biodiversity. Fitness functions, which describe the relationships between trait variation and fitness, can help to illuminate how this disruptive selection leads to population differentiation. However, a single fitness function represents only a particular selection regime over a single specified time period (often a single season or a year), and therefore might not capture longer-term dynamics. Here, we build a series of annual fitness functions that quantify the relationships between phenotype and apparent survival. These functions are based on a 9-year mark-recapture dataset of over 600 medium ground finches (Geospiza fortis) within a population bimodal for beak size. We then relate changes in the shape of these functions to climate variables. We find that disruptive selection between small and large beak morphotypes, as reported previously for 2 years, is present throughout the study period, but that the intensity of this selection varies in association with the harshness of environment. In particular, we find that disruptive selection was strongest when precipitation was high during the dry season of the previous year. Our results shed light on climatic factors associated with disruptive selection in Darwin's finches, and highlight the role of temporally varying fitness functions in modulating the extent of population differentiation.


Assuntos
Tentilhões/fisiologia , Seleção Genética , Animais , Bico , Equador , Tentilhões/genética , Fenótipo
7.
Parasitology ; 146(4): 438-444, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30259819

RESUMO

In the Upper Mississippi River Region, invasive faucet snails (Bithynia tentaculata) and their trematode parasites have been implicated in more than 182 000 waterfowl deaths since 1996. Estimating transmission potential depends on accurate assessments of susceptible host population size. However, little is known about the mechanisms underlying snail-host susceptibility in this system. Prior field studies suggest that very small, likely young, faucet snails are less suitable secondary intermediate hosts. Here, we test whether the patterns observed in the field are because small snails (1) are refractory to infection by cercariae, (2) die from infection and are removed from sampled populations, and/or (3) are not preferred by cercariae. Our own field collections were consistent with the observation that smaller faucet snails exhibit lower metacercarial infection prevalence and abundance than larger snails. However, laboratory-based experiments show that smaller snails were actually more susceptible to infection than larger snails. Moreover, the smallest snail size class had significantly higher mortality than larger snails following infection, which may explain their reduced infection levels observed in the field. Our study demonstrates the importance of pairing field and laboratory studies to better understand mechanisms underlying patterns of infection.


Assuntos
Interações Hospedeiro-Parasita , Espécies Introduzidas , Rios/parasitologia , Caramujos/parasitologia , Trematódeos/fisiologia , Animais , Cercárias/crescimento & desenvolvimento , Cercárias/isolamento & purificação , Cercárias/fisiologia , Densidade Demográfica , Trematódeos/crescimento & desenvolvimento , Wisconsin
8.
BMC Evol Biol ; 17(1): 183, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28835203

RESUMO

BACKGROUND: The molecular basis of evolutionary change is assumed to be genetic variation. However, growing evidence suggests that epigenetic mechanisms, such as DNA methylation, may also be involved in rapid adaptation to new environments. An important first step in evaluating this hypothesis is to test for the presence of epigenetic variation between natural populations living under different environmental conditions. RESULTS: In the current study we explored variation between populations of Darwin's finches, which comprise one of the best-studied examples of adaptive radiation. We tested for morphological, genetic, and epigenetic differences between adjacent "urban" and "rural" populations of each of two species of ground finches, Geospiza fortis and G. fuliginosa, on Santa Cruz Island in the Galápagos. Using data collected from more than 1000 birds, we found significant morphological differences between populations of G. fortis, but not G. fuliginosa. We did not find large size copy number variation (CNV) genetic differences between populations of either species. However, other genetic variants were not investigated. In contrast, we did find dramatic epigenetic differences between the urban and rural populations of both species, based on DNA methylation analysis. We explored genomic features and gene associations of the differentially DNA methylated regions (DMR), as well as their possible functional significance. CONCLUSIONS: In summary, our study documents local population epigenetic variation within each of two species of Darwin's finches.


Assuntos
Cidades , Epigênese Genética , Tentilhões/genética , Variação Genética , Animais , Cromossomos/genética , Ilhas de CpG/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Equador , Geografia , Masculino , Transdução de Sinais/genética , Especificidade da Espécie , Espermatozoides/metabolismo
9.
Mol Ecol ; 25(14): 3332-43, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27154249

RESUMO

Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant. We investigated the population genetics of a vector-borne desert mistletoe (Phoradendron californicum) across two legume host tree species (Senegalia greggii and Prosopis velutina) in the Sonoran desert using microsatellites. Consistent with host race formation, we found strong host-associated genetic structure in sympatry, little genetic variation due to geographic site and weak isolation by distance. We hypothesize that genetic differentiation results from differences in the timing of mistletoe flowering by host species, as we found initial flowering date of individual mistletoes correlated with genetic ancestry. Hybrids with intermediate ancestry were detected genetically. Individuals likely resulting from recent, successful establishment events following dispersal between the host species were detected at frequencies similar to hybrids between host races. Therefore, barriers to gene flow between the host races may have been stronger at mating than at dispersal. We also found higher inbreeding and within-host individual relatedness values for mistletoes on the more rare and isolated host species (S. greggii). Our study spanned spatial scales to address how interactions with both vectors and hosts influence parasitic plant structure with implications for parasite virulence evolution and speciation.


Assuntos
Fabaceae/parasitologia , Genética Populacional , Viscaceae/genética , Animais , Arizona , Evolução Biológica , Fabaceae/genética , Flores/fisiologia , Fluxo Gênico , Variação Genética , Hibridização Genética , Endogamia , Insetos Vetores , Repetições de Microssatélites , Reprodução , Simpatria , Viscaceae/fisiologia
10.
Ecology ; 97(4): 940-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27220210

RESUMO

Introduced parasites threaten native host species that lack effective defenses. Such parasites increase the risk of extinction, particularly in small host populations like those on islands. If some host species are tolerant to introduced parasites, this could amplify the risk of the parasite to vulnerable host species. Recently, the introduced parasitic nest fly Philornis downsi has been implicated in the decline of Darwin's finch populations in the Galápagos Islands. In some years, 100% of finch nests fail due to P. downsi; however, other common host species nesting near Darwin's finches, such as the endemic Galápagos mockingbird (Mimus parvulus), appear to be less affected by P. downsi. We compared effects of P. downsi on mockingbirds and medium ground finches (Geospiza fortis) on Santa Cruz Island in the Galápagos. We experimentally manipulated the abundance of P. downsi in nests of mockingbirds and finches to measure the direct effect of the parasite on the reproductive success of each species of host. We also compared immunological and behavioral responses by each species of host to the fly. Although nests of the two host species had similar parasite densities, flies decreased the fitness of finches but not mockingbirds. Neither host species had a significant antibody-mediated immune response to P. downsi. Moreover, finches showed no significant increase in begging, parental provisioning, or plasma glucose levels in response to the flies. In contrast, parasitized mockingbird nestlings begged more than nonparasitized mockingbird nestlings. Greater begging was correlated with increased parental provisioning behavior, which appeared to compensate for parasite damage. The results of our study suggest that finches are negatively affected by P. downsi because they do not have such behavioral mechanisms for energy compensation. In contrast, mockingbirds are capable of compensation, making them tolerant hosts, and a possible indirect threat to Darwin's finches.


Assuntos
Doenças das Aves/parasitologia , Espécies Introduzidas , Miíase/veterinária , Passeriformes , Envelhecimento , Animais , Comportamento Animal , Doenças das Aves/epidemiologia , Glicemia , Peso Corporal , Dípteros , Equador/epidemiologia , Feminino , Masculino , Miíase/epidemiologia , Miíase/parasitologia , Especificidade da Espécie
11.
J Appl Ecol ; 53(2): 511-518, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26980922

RESUMO

Introduced pathogens and other parasites are often implicated in host population level declines and extinctions. However, such claims are rarely supported by rigorous real-time data. Indeed, the threat of introduced parasites often goes unnoticed until after host populations have declined severely. The recent introduction of the parasitic nest fly, Philornis downsi, to the Galápagos Islands provides an opportunity to monitor the current impact of an invasive parasite on endemic land bird populations, including Darwin's finches.In this paper we present a population viability model to explore the potential long-term effect of P. downsi on Darwin's finch populations. The goal of our study was to determine whether P. downsi has the potential to drive host populations to extinction and whether management efforts are likely to be effective.Our model is based on data from five years of experimental field work documenting the effect of P. downsi on the reproductive success of medium ground finch Geospiza fortis populations on Santa Cruz Island. Under two of the three scenarios tested, the model predicted medium ground finches are at risk of extinction within the next century.However, sensitivity analyses reveal that even a modest reduction in the prevalence of the parasite could improve the stability of finch populations. We discuss the practicality of several management options aimed at achieving this goal.Synthesis and applications. Our study demonstrates the predicted high risk of local extinction of an abundant host species, the medium ground finch Geospiza fortis due to an introduced parasite, Philornis downsi. However, our study further suggests that careful management practices aimed at reducing parasite prevalence have the potential to significantly lower the risk of host species extinction.

12.
Ecology ; 97(4): 940-950, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28792593

RESUMO

Introduced parasites threaten native host species that lack effective defenses. Such parasites increase the risk of extinction, particularly in small host populations like those on islands. If some host species are tolerant to introduced parasites, this could amplify the risk of the parasite to vulnerable host species. Recently, the introduced parasitic nest fly Philornis downsi has been implicated in the decline of Darwin's finch populations in the Galápagos Islands. In some years, 100% of finch nests fail due to P. downsi; however, other common host species nesting near Darwin's finches, such as the endemic Galápagos mockingbird (Mimus parvulus), appear to be less affected by P. downsi. We compared effects of P. downsi on mockingbirds and medium ground finches (Geospiza fortis) on Santa Cruz Island in the Galápagos. We experimentally manipulated the abundance of P. downsi in nests of mockingbirds and finches to measure the direct effect of the parasite on the reproductive success of each species of host. We also compared immunological and behavioral responses by each species of host to the fly. Although nests of the two host species had similar parasite densities, flies decreased the fitness of finches but not mockingbirds. Neither host species had a significant antibody-mediated immune response to P. downsi. Moreover, finches showed no significant increase in begging, parental provisioning, or plasma glucose levels in response to the flies. In contrast, parasitized mockingbird nestlings begged more than nonparasitized mockingbird nestlings. Greater begging was correlated with increased parental provisioning behavior, which appeared to compensate for parasite damage. The results of our study suggest that finches are negatively affected by P. downsi because they do not have such behavioral mechanisms for energy compensation. In contrast, mockingbirds are capable of compensation, making them tolerant hosts, and a possible indirect threat to Darwin's finches.


Assuntos
Tentilhões/fisiologia , Passeriformes/fisiologia , Animais , Equador , Monitoramento Ambiental , Tentilhões/parasitologia , Ilhas , Parasitos , Passeriformes/parasitologia
13.
Biol Lett ; 10(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25099959

RESUMO

Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host-parasite populations. We found that island populations of the Galápagos hawk (Buteo galapagoensis) and a parasitic feather louse species (Degeeriella regalis) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se, suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.


Assuntos
Evolução Biológica , Especiação Genética , Falcões/genética , Falcões/parasitologia , Ftirápteros/genética , Animais , Equador , Variação Genética , Geografia , Ilhas , Infestações por Piolhos
14.
Genome Biol Evol ; 6(8): 1972-89, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25062919

RESUMO

The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes can accumulate over longer periods of evolutionary time has seldom been tested empirically. This study was designed to compare epigenetic changes among several closely related species of Darwin's finches, a well-known example of adaptive radiation. Erythrocyte DNA was obtained from five species of sympatric Darwin's finches that vary in phylogenetic relatedness. Genome-wide alterations in genetic mutations using copy number variation (CNV) were compared with epigenetic alterations associated with differential DNA methylation regions (epimutations). Epimutations were more common than genetic CNV mutations among the five species; furthermore, the number of epimutations increased monotonically with phylogenetic distance. Interestingly, the number of genetic CNV mutations did not consistently increase with phylogenetic distance. The number, chromosomal locations, regional clustering, and lack of overlap of epimutations and genetic mutations suggest that epigenetic changes are distinct and that they correlate with the evolutionary history of Darwin's finches. The potential functional significance of the epimutations was explored by comparing their locations on the genome to the location of evolutionarily important genes and cellular pathways in birds. Specific epimutations were associated with genes related to the bone morphogenic protein, toll receptor, and melanogenesis signaling pathways. Species-specific epimutations were significantly overrepresented in these pathways. As environmental factors are known to result in heritable changes in the epigenome, it is possible that epigenetic changes contribute to the molecular basis of the evolution of Darwin's finches.


Assuntos
Epigênese Genética , Tentilhões/genética , Animais , Metilação de DNA , Tentilhões/fisiologia , Mutação , Filogenia , Seleção Genética , Transdução de Sinais
15.
J Field Ornithol ; 84(2): 210-215, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24039328

RESUMO

Two methods commonly used to quantify ectoparasites on live birds are visual examination and dust-ruffling. Visual examination provides an estimate of ectoparasite abundance based on an observer's timed inspection of various body regions on a bird. Dust-ruffling involves application of insecticidal powder to feathers that are then ruffled to dislodge ectoparasites onto a collection surface where they can then be counted. Despite the common use of these methods in the field, the proportion of actual ectoparasites they account for has only been tested with Rock Pigeons (Columba livia), a relatively large-bodied species (238-302 g) with dense plumage. We tested the accuracy of the two methods using European Starlings (Sturnus vulgaris; ~75 g). We first quantified the number of lice (Brueelia nebulosa) on starlings using visual examination, followed immediately by dust-ruffling. Birds were then euthanized and the proportion of lice accounted for by each method was compared to the total number of lice on each bird as determined with a body-washing method. Visual examination and dust-ruffling each accounted for a relatively small proportion of total lice (14% and 16%, respectively), but both were still significant predictors of abundance. The number of lice observed by visual examination accounted for 68% of the variation in total abundance. Similarly, the number of lice recovered by dust-ruffling accounted for 72% of the variation in total abundance. Our results show that both methods can be used to reliably quantify the abundance of lice on European Starlings and other similar-sized passerines.

16.
Gen Comp Endocrinol ; 193: 68-71, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23892015

RESUMO

Parasites can negatively affect the evolutionary fitness of their hosts by eliciting physiological stress responses. Parasite-induced stress can be monitored by measuring changes in the adrenal steroid hormone corticosterone. We examined the effect of an invasive parasite on the corticosterone concentrations of a common species of Darwin's finch, the medium ground finch (Geospiza fortis). Philornis downsi (Diptera: Muscidae) is a parasitic nest fly recently introduced to the Galapagos Islands, where it feeds on the blood of nestlings and breeding adult female finches. Previous work shows that P. downsi significantly reduces the reproductive success of several species of finches. We predicted that the effect of P. downsi on host reproductive success is mediated by stress responses in breeding female finches. High stress levels could reduce the ability of females to invest in offspring, thus decreasing their reproductive success. To test this hypothesis, we experimentally manipulated the abundance of P. downsi in nests, then measured baseline and acute stress-induced corticosterone levels, body condition, and hematocrit (red blood cell content). Acute stress-induced corticosterone levels increased over baseline levels, but this response did not differ significantly with parasite treatment. There was also no significant difference in the body condition or hematocrit of females from parasitized versus non-parasitized nests. Our results suggest that the lower reproductive success of females from parasitized nests is not mediated by a physiological stress response.


Assuntos
Corticosterona/metabolismo , Dípteros/fisiologia , Tentilhões/metabolismo , Tentilhões/parasitologia , Animais , Cruzamento , Feminino , Comportamento de Nidação/fisiologia
17.
J Parasitol ; 99(5): 756-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23691947

RESUMO

Feather mites are a diverse group of ectosymbionts that occur on most species of birds. Although Darwin's finches are a well-studied group of birds, relatively little is known about their feather mites. Nearly 200 birds across 9 finch species, and from 2 locations on Santa Cruz Island, Galápagos, were dust-ruffled during the 2009 breeding season. We found 8 genera of feather mites; the most prevalent genus was Mesalgoides (53-55%), followed by Trouessartia (40-45%), Amerodectes and Proctophyllodes (26-33%), Xolalgoides (21-27%), Analges and Strelkoviacarus (0-6%), and Dermoglyphus (2-4%). There was no evidence for microclimatic effects (ambient temperature and relative humidity) on mite diversity. Host body mass was significantly correlated with mean feather mite abundance across 7 of 8 well-sampled species of finches. Certhidea olivacea, the smallest species, did not fit this pattern and had a disproportionately high number of mites for its body mass.


Assuntos
Biodiversidade , Doenças das Aves/parasitologia , Plumas/parasitologia , Tentilhões/parasitologia , Infestações por Ácaros/veterinária , Ácaros/classificação , Altitude , Animais , Doenças das Aves/epidemiologia , Equador/epidemiologia , Umidade , Ilhas/epidemiologia , Infestações por Ácaros/epidemiologia , Infestações por Ácaros/parasitologia , Prevalência , Temperatura
18.
Ecol Evol ; 3(8): 2514-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24567824

RESUMO

Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune defenses, rather than assuming that such responses increase host fitness. Host immune responses can protect against the negative fitness consequences of parasitism; however, the strength and effectiveness of these responses vary among hosts. Strong host immune responses are often assumed to correlate with greater host fitness. This study investigates the relationship between host immune response, parasite load, and host fitness using Darwin's finches and an invasive nest parasite. We found that while the immune response of mothers appeared defensive, it did not rescue current reproductive fitness.

19.
J Parasitol ; 98(1): 46-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21942474

RESUMO

Preening is a bird's first line of defense against harmful ectoparasites. Ectoparasites, in turn, have evolved adaptations for avoiding preening such as hardened exoskeletons and escape behavior. Earlier work suggests that some groups of ectoparasites, such as feather lice, leave hiding places in feathers that are exposed to direct sunlight, making them more vulnerable to preening. It is, therefore, conceivable that birds may choose to preen in direct sunlight, assuming it improves the effectiveness of preening. Using mourning doves and their feather lice, we tested 2 related hypotheses; (1) that birds with access to direct sunlight preen more often than birds in shade, and (2) that birds with access to direct sunlight are more effective at controlling their ectoparasites than birds in shade. To test these hypotheses, we conducted an experiment in which we manipulated both sunlight and preening ability. Our results provided no support for either hypothesis, i.e., birds given the opportunity to preen in direct sunlight did not preen significantly more often, or more effectively, than did birds in shade. Thus, the efficiency of preening for ectoparasite control appears to be independent of light intensity, at least in the case of mourning doves and their feather lice.


Assuntos
Doenças das Aves/prevenção & controle , Columbidae/fisiologia , Columbidae/parasitologia , Asseio Animal/efeitos da radiação , Infestações por Piolhos/veterinária , Luz Solar , Análise de Variância , Animais , Doenças das Aves/parasitologia , Infestações por Piolhos/parasitologia , Infestações por Piolhos/prevenção & controle , Ftirápteros/crescimento & desenvolvimento , Distribuição Aleatória
20.
PLoS One ; 6(5): e19706, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21589659

RESUMO

BACKGROUND: Introduced parasites are a particular threat to small populations of hosts living on islands because extinction can occur before hosts have a chance to evolve effective defenses. An experimental approach in which parasite abundance is manipulated in the field can be the most informative means of assessing a parasite's impact on the host. The parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, feeds on nestling Darwin's finches and other land birds. Several correlational studies, and one experimental study of mixed species over several years, reported that the flies reduce host fitness. Here we report the results of a larger scale experimental study of a single species at a single site over a single breeding season. METHODOLOGY/PRINCIPAL FINDINGS: We manipulated the abundance of flies in the nests of medium ground finches (Geospiza fortis) and quantified the impact of the parasites on nestling growth and fledging success. We used nylon nest liners to reduce the number of parasites in 24 nests, leaving another 24 nests as controls. A significant reduction in mean parasite abundance led to a significant increase in the number of nests that successfully fledged young. Nestlings in parasite-reduced nests also tended to be larger prior to fledging. CONCLUSIONS/SIGNIFICANCE: Our results confirm that P. downsi has significant negative effects on the fitness of medium ground finches, and they may pose a serious threat to other species of Darwin's finches. These data can help in the design of management plans for controlling P. downsi in Darwin's finch breeding populations.


Assuntos
Tentilhões/parasitologia , Animais , Comportamento de Nidação , Contagem de Ovos de Parasitas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...