Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 56(10): 2796-2803, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375244

RESUMO

Refractive optical elements are widely used in millimeter and sub-millimeter (sub-mm) astronomical telescopes. High-resistivity silicon is an excellent material for dielectric lenses given its low loss tangent, high thermal conductivity, and high index of refraction. The high index of refraction of silicon causes a large Fresnel reflectance at the vacuum-silicon interface (up to 30%), which can be reduced with an anti-reflection (AR) coating. In this work, we report techniques for efficiently AR coating silicon at sub-mm wavelengths using deep reactive ion etching (DRIE) and bonding the coated silicon to another silicon optic. Silicon wafers of 100 mm diameter (1 mm thick) were coated and bonded using the silicon direct bonding technique at high temperature (1100°C). No glue is used in this process. Optical tests using a Fourier transform spectrometer show sub-percent reflections for a single-layer DRIE AR coating designed for use at 320 µm on a single wafer. Cryogenic (10 K) measurements of a bonded pair of AR-coated wafers also reached sub-percent reflections. A prototype two-layer DRIE AR coating to reduce reflections and increase bandwidth is presented, and plans for extending this approach are discussed.

2.
Phys Rev Lett ; 117(25): 257003, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036192

RESUMO

We use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω_{1}≈4 meV and Ω_{2}≈15 meV, allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as well as provide a local view of impurity-induced effects on the superconducting and pseudogap states. Our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...