Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neth Heart J ; 19(6): 290-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21512816

RESUMO

In this part of a series on founder mutations in the Netherlands, we review familial idiopathic ventricular fibrillation linked to the DPP6 gene. Familial idiopathic ventricular fibrillation determines an intriguing subset of the inheritable arrhythmia syndromes as there is no recognisable phenotype during cardiological investigation other than ventricular arrhythmias highly associated with sudden cardiac death. Until recently, it was impossible to identify presymptomatic family members at risk for fatal events. We uncovered several genealogically linked families affected by numerous sudden cardiac deaths over the past centuries, attributed to familial idiopathic ventricular fibrillation. Notably, ventricular fibrillation in these families was provoked by very short coupled monomorphic extrasystoles. We were able to associate their phenotype of lethal arrhythmic events with a haplotype harbouring the DPP6 gene. While this gene has not earlier been related to cardiac arrhythmias, we are now able, for the first time, to identify and to offer timely treatment to presymptomatic family members at risk for future fatal events solely by genetic analysis. Therefore, when there is a familial history of unexplained sudden cardiac deaths, a link to the DPP6 gene may be explored as it may enable risk evaluation of the remaining family members. In addition, when closely coupled extrasystoles initiate ventricular fibrillation in the absence of other identifiable causes, a link to the DPP6 gene should be suspected.

2.
Eur J Hum Genet ; 16(3): 350-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18059420

RESUMO

Variable transcription of the cardiac sodium channel gene is a candidate mechanism determining arrhythmia susceptibility. We have previously cloned and characterized the core promoter and flanking region of SCN5A, encoding the cardiac sodium channel. Loss-of-function mutations in this gene have been reported in approximately 20% of patients with Brugada syndrome, an inherited cardiac electrical disorder associated with a high incidence of life-threatening arrhythmias. In this study, we identified DNA variants in the proximal 2.8 kb promoter region of SCN5A and determined their frequency in 1,121 subjects. This population consisted of 88 Brugada syndrome patients with no SCN5A coding region mutation, and 1,033 anonymized subjects from various ethnicities. Variant promoter activity was assayed in CHO cells and neonatal cardiomyocytes by transient transfection of promoter-reporter constructs. Single-nucleotide polymorphisms (SNPs) were identified at approximately 1/200 base pairs which are: 11 in the 5'-flanking region, 1 in exon 1, and 5 in intron 1. In addition, a haplotype consisting of two SNPs in complete linkage disequilibrium was identified. Minor allele frequencies were >5% in at least one ethnic panel at 5/19 polymorphic sites. In vitro functional analysis in cardiomyocytes identified four variants with significantly (P<0.05) reduced reporter activity (up to 63% reduction). The largest changes were seen with c.-225-1790 G>A, which reduced reporter activity by 62.8% in CHO cells and 55% in cardiomyocytes. From these results, we can conclude that the SCN5A core promoter includes multiple DNA polymorphisms with altered in vitro activity, further supporting the concept of interindividual variability in transcription of this cardiac ion channel gene.


Assuntos
Miocárdio/metabolismo , Polimorfismo Genético , Regiões Promotoras Genéticas , Canais de Sódio/genética , Alelos , Animais , Sequência de Bases , Síndrome de Brugada/genética , Células CHO , Cricetinae , Cricetulus , Primers do DNA , Frequência do Gene , Humanos , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...