Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 272(12): 8002-6, 1997 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-9065471

RESUMO

In a previous study the photoactivable affinity probe, 3-azi-1-[([6-3H]2-acetamido-2-deoxy-1-beta-D-galactopyranosyl)thio ]-b utane, was used to identify the active site of beta-hexosaminidase B, a beta-subunit dimer (Liessem, B., Glombitza, G. J., Knoll, F., Lehmann, J., Kellermann, J., Lottspeich, F., and Sandhoff, K. (1995) J. Biol. Chem. 270, 23693-23699). The probe predominately labeled Glu-355, a highly conserved residue among hexosaminidases. To determine if Glu-355 has a role in catalysis, beta-subunit mutants were prepared with the Glu-355 codon altered to either Ala, Gln, Asp, or Trp. After expression of mutant proteins using recombinant baculovirus, the enzyme activity associated with the beta-subunits was found to be reduced to background levels. Although catalytic activity was lost, the mutations did not otherwise affect the folding or assembly of the subunits. The mutant beta-subunits could be isolated using substrate affinity chromatography, indicating they contained intact substrate binding sites. As shown by cross-linking with disuccinimidyl suberate, the mutant beta-subunits were properly assembled. They could also participate in the formation of functional beta-hexosaminidase A activity as indicated by activator-dependent GM2 ganglioside degradation activity produced by co-expression of the mutant beta-subunits with the alpha-subunit. Finally, the mutant subunits showed normal lysosomal processing in COS-1 cells, demonstrating that a transport-competent protein conformation had been attained. Collectively the results provide strong support for the intimate involvement of Glu-355 in beta-hexosaminidase B-mediated catalysis.


Assuntos
Ácido Glutâmico/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Marcadores de Afinidade , Animais , Células COS , Catálise , Cromatografia de Afinidade , Humanos , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...