Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 25(29): 29734-29751, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30145758

RESUMO

Modeling (MONERIS) studies allowed calculation of nitrogen (N) and phosphorus (P) emission into the Vistula and Oder basins (Poland), and facilitated estimation of N and P retention in these catchments in 1995-2015. In the discussion of results, data of other authors were used in order to get an insight into N (1880-2015) and P emission (1955-2015) into the Oder basin. Population growth and agricultural intensification were responsible for respective 5.3-fold and 3.5-fold increase in N and P emission into the Oder basin, with the maximum (135,000 tons N year-1; 14,000 tons P year-1) observed at the turn of the 1980s/1990s. Pro-ecological activities during the economic transition period (since 1989) covered various sectors of the economy including agriculture, environmental protection related to, e.g., construction of a large number of waste water treatment plants (WWTPs). Consequently, in 1985-2015, the emission into the Oder basin decreased from the abovementioned maxima to 94,000 tons N year-1 and to 5000 tons P year-1, whereas in 1995-2015, the emission into the Vistula basin decreased from 170,000 to 140,000 tons N year-1 and from 14,200 to 10,600 tons P year-1. In 1995-2015, groundwater, tile drainage, and WWTPs played a key role in N emission, while erosion, overland flow, WWTPs, and urban areas played a predominant role in P emission. The relative shares of nutrient emission pathways in overall N and P emission were considerably changing over time. Extreme weather conditions have a great impact on increased (floods) or decreased (droughts) nutrient emission; particularly, N emission is susceptible to variable weather conditions. In total, approximately 91,000 tons of N and 7600 tons of P were retained annually in the river basins.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Sistemas de Informação Geográfica , Água Subterrânea/química , Polônia , Águas Residuárias/química , Purificação da Água/métodos
2.
Sci Total Environ ; 493: 32-43, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24937490

RESUMO

Poland, with its large drainage area, with 50% contribution of agricultural land and 45% contribution of population to overall agricultural land area and population number in the Baltic catchment, is the largest exporter of riverine nitrogen (N) and phosphorus (P) to the sea. The economic transition has resulted in substantial, statistically significant decline in N, P export from Polish territory to the Baltic Sea. Following the obligations arising from the Helsinki Commission (HELCOM) declarations, in the coming years, Poland is expected to reduce riverine N loads by ca. 25% and P loads by ca. 60% as referred to the average flow normalized loads recorded in 1997-2003. The aim of this paper is to estimate annual source apportioned N and P emissions into these river basins in 2015 and 2020 with application of modeling studies (MONERIS). Twelve scenarios, encompassing changes in anthropogenic (diffuse, point source) and natural pressure (precipitation, water outflow due to climate change), have been applied. Modeling outcome for the period 2003-2008 served as our reference material. In applied scenarios, N emission into the Oder basin in 2015 and 2020 shows an increase from 4.2% up to 9.1% as compared with the reference period. N emission into the Vistula basin is more variable and shows an increase by max. 17.8% or a decrease by max. 4.7%, depending on the scenario. The difference between N emission into the Oder and Vistula basins is related to the catchment peculiarities and handling of point sources emission. P emission into both basins shows identical scenario patters and a maximum decrease reaches 17.8% in the Oder and 16.7% in the Vistula basin. Despite a declining tendency in P loads in both rivers in all the scenarios, HELCOM targeted P load reduction is not feasible.


Assuntos
Desenvolvimento Econômico , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polônia , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...