Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675688

RESUMO

A series of silica-based aerogels comprising novel bifunctional chelating ligands was prepared. To produce target aerogels, two aminosilanes, namely (3-aminopropyl)trimethoxysilane (APTMS) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPTMS), were acylated by natural amino acids ((S)-(+)-2-phenylglycine or L-phenylalanine), followed by gelation and supercritical drying (SCD). Lithium tetrachloropalladate was used as the metal ion source to prepare strong complexes of Pd2+ with amino acids covalently bonded to a silica matrix. Aerogels bearing chelate complexes retain the Pd2+ oxidation state after supercritical drying in CO2, but the Pd ion is reduced to Pd metal after SCD in isopropanol. Depending on the structure of amino complexes, Pd-containing aerogels showed catalytic activity and selectivity in the hydrogenation reactions of C=C, C≡C and C=O bonds.

2.
Biomimetics (Basel) ; 8(7)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37999161

RESUMO

New composite hydrogels (CH) based on bacterial cellulose (BC) and poly-1-vinyl-1,2,4-triazole (PVT) doped with orthophosphoric acid (oPA), presenting interpenetrating polymeric networks (IPN), have been synthesized. The mesoscopic study of the supramolecular structure (SMS) of both native cellulose, produced by the strain Komagataeibacter rhaeticus, and the CH based on BC and containing PVT/oPA complex were carried out in a wide range of momentum transfer using ultra- and classical small-angle neutron scattering techniques. The two SMS hierarchical levels were revealed from 1.6 nm to 2.5 µm for the objects under investigation. In addition, it was shown that the native BC had a correlation peak on the small-angle scattering curves at 0.00124 Å-1, with the correlation length ξ being equal to ca. 510 nm. This motive was also retained in the IPN. The data obtained allowed the estimation of the fractal dimensions and ranges of self-similarity and gave new information about the BC mesostructure and its CH. Furthermore, we revealed them to be in coincidence with Brown's BC model, which was earlier supported by Fink's results.

3.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615607

RESUMO

The chemical immobilization of cobalt(II) ions in a silica aerogel matrix enabled the synthesis of the first representative example of aerogel-based single-ion magnets. For the synthesis of the lyogels, methyl-trimethoxysilane and N-3-(trimethoxysilyl)propyl ethylenediamine were co-hydrolyzed, then the ethylenediamine groups that were immobilized on the silica matrix enabled the subsequent binding of cobalt(II) ions. Lyogels with various amounts of ethylenediamine moieties (0.1-15 mol %) were soaked in isopropanol solutions of cobalt(II) nitrate and further supercritically dried in carbon dioxide to obtain aerogels with a specific surface area of 210-596 m2·g-1, an apparent density of 0.403-0.740 cm3·g-1 and a porosity of 60-78%. The actual cobalt content in the aerogels was 0.01-1.50 mmol per 1 g of SiO2, which could easily be tuned by the concentration of ethylenediamine moieties in the silica matrix. The introduction of cobalt(II) ions into the ethylenediamine-modified silica aerogel promoted the stability of the diamine moieties at the supercritical drying stage. The molecular prototype of the immobilized cobalt(II) complex, bearing one ethylenediamine ligand [Co(en)(MeCN)(NO3)2], was synthesized and structurally characterized. Using magnetometry in the DC mode, it was shown that cobalt(II)-modified silica aerogels exhibited slow magnetic relaxation in a nonzero field. A decrease in cobalt(II) concentration in aerogels from 1.5 mmol to 0.14 mmol per 1 g of SiO2 resulted in a weakening of inter-ion interactions; the magnetization reversal energy barrier likewise increased from 4 to 18 K.


Assuntos
Imãs , Dióxido de Silício , Dióxido de Silício/química , Cobalto/química , Magnetismo , Etilenodiaminas
4.
Polymers (Basel) ; 14(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36236094

RESUMO

A series of multiblock polyurethane-ureas (PUU) based on polycaprolactone diol (PCL) with a molecular mass of 530 or 2000 g/mol, as well as hard segments of different lengths and structures, were synthesized by the step-growth polymerization method. The chemical structure of the synthesized multiblock copolymers was confirmed by IR- and NMR-spectroscopy. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to determine the relaxation and phase transition temperatures for the entire series of the obtained PUU. The X-ray diffraction (XRD) method made it possible to identify PUU compositions in which the crystallizability of soft segments (SS) is manifested due to their sufficient length for self-organization and structuring. Visualization of the crystal structure and disordering of the stacking of SS with an increase in their molecular mobility during heating are shown using optical microscopy. The change in the size of the hard phase domains and the value of the interdomain distance depending on the PCL molecular mass, as well as the length and structure of the hard block in the synthesized PUU, were analyzed using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The evolution of the domain structure upon passing through the melting and crystallization temperatures of PUU soft blocks was studied using SANS. The studies carried out made it possible to reveal the main correlations between the chemical structure of the synthesized PUU and their supramolecular organization as well as thermal and mechanical properties.

5.
Life (Basel) ; 10(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260571

RESUMO

Microbially induced CaCO3 precipitation (MICP) is considered as an alternative green technology for cement self-healing and a basis for the development of new biomaterials. However, some issues about the role of bacteria in the induction of biogenic CaCO3 crystal nucleation, growth and aggregation are still debatable. Our aims were to screen for ureolytic calcifying microorganisms and analyze their MICP abilities during their growth in urea-supplemented and urea-deficient media. Nine candidates showed a high level of urease specific activity, and a sharp increase in the urea-containing medium pH resulted in efficient CaCO3 biomineralization. In the urea-deficient medium, all ureolytic bacteria also induced CaCO3 precipitation although at lower pH values. Five strains (B. licheniformis DSMZ 8782, B. cereus 4b, S. epidermidis 4a, M. luteus BS52, M. luteus 6) were found to completely repair micro-cracks in the cement samples. Detailed studies of the most promising strain B. licheniformis DSMZ 8782 revealed a slower rate of the polymorph transformation in the urea-deficient medium than in urea-containing one. We suppose that a ureolytic microorganism retains its ability to induce CaCO3 biomineralization regardless the origin of carbonate ions in a cell environment by switching between mechanisms of urea-degradation and metabolism of calcium organic salts.

6.
ACS Omega ; 5(28): 17592-17600, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715244

RESUMO

Ceric hydrogen phosphate gels possess a very unique spatial organization, being nearly amorphous materials with a fibrous structure. Using a sol-gel approach, we succeeded in preparing bulky gels containing as much as 20,000 molecules of water per cerium atom. Supercritical treatment of these gels made it possible to obtain the first ultralight monolithic noncarbonaceous aerogels with a density as low as 1 mg/cm3.

7.
Materials (Basel) ; 13(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369952

RESUMO

The crystal and supramolecular structure of the bacterial cellulose (BC) has been studied at different stages of cellobiohydrolase hydrolysis using various physical and microscopic methods. Enzymatic hydrolysis significantly affected the crystal and supramolecular structure of native BC, in which the 3D polymer network consisted of nanoribbons with a thickness T ≈ 8 nm and a width W ≈ 50 nm, and with a developed specific surface SBET ≈ 260 m2·g-1. Biodegradation for 24 h led to a ten percent decrease in the mean crystal size Dhkl of BC, to two-fold increase in the sizes of nanoribbons, and in the specific surface area SBET up to ≈ 100 m2·g-1. Atomic force and scanning electron microscopy images showed BC microstructure "loosening"after enzymatic treatment, as well as the formation and accumulation of submicron particles in the cells of the 3D polymer network. Experiments in vitro and in vivo did not reveal cytotoxic effect by the enzyme addition to BC dressings and showed a generally positive influence on the treatment of extensive III-degree burns, significantly accelerating wound healing in rats. Thus, in our opinion, the results obtained can serve as a basis for further development of effective biodegradable dressings for wound healing.

8.
Molecules ; 25(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905983

RESUMO

Tungsten oxide-based bulk and nanocrystalline materials are widely used as photocatalytic and photo- and electrochromic materials, as well as materials for biomedical applications. In our work, we focused our attention on the effect of sodium cations on the structure and photochromic properties of the WO3@PVP aqueous sols. To establish the effect, the sols were synthesized by either simple pH adjusting of sodium or ammonium tungstates' solutions, or using an ion exchange technique to remove the cations from the materials to the greatest possible extent. We showed that the presence of sodium cations in WO3@PVP favors the formation of reduced tungsten species (W+5) upon UV irradiation of the materials, strongly affecting their photochromic and photocatalytic properties. The pronounced photoreductive properties of WO3@PVP sols in photocatalytic reactions were demonstrated. Due to photoreductive properties, photochromic sols of tungsten oxide can act as effective photoprotectors in photooxidation processes. We believe that our work provides a considerable contribution to the elucidation of photochromic and redox phenomena in WO3-based materials.


Assuntos
Nanopartículas/química , Óxidos/química , Povidona/química , Sódio/química , Tungstênio/química , Catálise , Cátions , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Espalhamento a Baixo Ângulo , Raios Ultravioleta , Difração de Raios X
9.
Luminescence ; 33(5): 837-849, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29683250

RESUMO

Spherical nanoparticles of ZrO2 with 2 and 10 mol% EuO1.5 up to 20 nm size were prepared by the method of hydrothermal synthesis for luminescent functionalization of the polymer-inorganic nanocomposites based on poly(methyl methacrylate). Surface modification of oxide nanoparticles was carried out by 3-(trimethoxysilyl)propyl methacrylate, dimethoxymethylvinyl silane and 2-hydroxyethyl methacrylate to provide uniform distribution and to prevent agglomeration of nanosized filler in the polymer matrix. Polymer-inorganic composites were synthesized by in situ free radical polymerization in bulk. Structuring of ZrO2 -EuO1.5 nanoparticles in the poly(methyl methacrylate) was studied by very-small-angle neutron scattering. According to the results, the dependence of photoluminescent properties of ZrO2 -EuO1.5 nanoparticles on the content of lanthanide, the symmetry of the crystal field, surface treatment and the polymer matrix were established. A correlation was shown between Stark splitting in luminescence spectra of ZrO2 -EuO1.5 nanoparticles and their phase composition. Using MMT-assay it was shown that composites based on poly(methyl methacrylate) and ZrO2 -EuO1.5 nanoparticles do not have cytotoxic properties, which makes it possible to use them as prosthesis materials with contrasted and luminescent imaging properties.


Assuntos
Európio/química , Substâncias Luminescentes/química , Nanocompostos/química , Polimetil Metacrilato/química , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Substâncias Luminescentes/síntese química , Medições Luminescentes , Espectroscopia de Ressonância Magnética , Nanocompostos/toxicidade , Nanopartículas/química , Difração de Nêutrons , Polímeros/química , Espalhamento a Baixo Ângulo , Espectrometria por Raios X , Difração de Raios X , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...