Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37960008

RESUMO

The elaboration of a low-cost and effective approach to synthesize hybrid composite materials based on the conventional thermoplastics and natural biopolymers is a sustainable alternative to the production of "traditional" plastics. Cellulose is one of the most abundant biopolymers. Its fibrils possess outstanding mechanical characteristics and, hence, attract considerable interest of researchers during recent decades. However, modification of the hydrophobic polymer matrix by cellulose fibrils is significantly complicated by the hydrophilic nature of the latter. In this study, we propose an effective and low-cost approach to the synthesis of polystyrene at the cellulose microfibrils composite material via the emulsion polymerization method. The obtained fibrous composite was comprehensively analyzed with FTIR spectroscopy, SEM, TGA, and DSC, and was further employed to produce sponge hybrid materials. We investigated the influence of the cellulose/polystyrene ratio on the density, porosity, pore volume, and water uptake of the obtained sponge materials. The sample containing 70 wt.% of cellulose demonstrated the best water absorption properties while preserving its shape, even after 24 h of floating on water. The produced sponge materials might be employed as sorption materials for the purification and desalination of waters of various origins, filtration, and collection of undesirable elements under specific industrial or natural conditions.

2.
Materials (Basel) ; 16(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834594

RESUMO

Organic phase-change materials (PCMs) hold promise in developing advanced thermoregulation and responsive energy systems owing to their high latent heat capacity and thermal reliability. However, organic PCMs are prone to leakages in the liquid state and, thus, are hardly applicable in their pristine form. Herein, we encapsulated organic PCM n-Octadecane into polyurethane capsules via polymerization of commercially available polymethylene polyphenylene isocyanate and polyethylene glycol at the interface oil-in-water emulsion and studied how various n-Octadecane feeding affected the shell formation, capsule structure, and latent heat storage properties. The successful shell polymerization and encapsulation of n-Octadecane dissolved in the oil core was verified by confocal microscopy and Fourier-transform infrared spectroscopy. The mean capsule size varied from 9.4 to 16.7 µm while the shell was found to reduce in thickness from 460 to 220 nm as the n-Octadecane feeding increased. Conversely, the latent heat storage capacity increased from 50 to 132 J/g corresponding to the growth in actual n-Octadecane content from 25% to 67% as revealed by differential scanning calorimetry. The actual n-Octadecane content increased non-linearly along with the n-Octadecane feeding and reached a plateau at 66-67% corresponded to 3.44-3.69 core-to-monomer ratio. Finally, the capsules with the reasonable combination of structural and thermal properties were evaluated as a thermoregulating additive to a commercially available paint.

3.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765611

RESUMO

Antibiotic-loaded bone cement (ALBC) has become an indispensable material in orthopedic surgery in recent decades, owing to the possibility of drugs delivery to the surgical site. It is applied for both infection prophylaxis (e.g., in primary joint arthroplasty) and infection treatment (e.g., in periprosthetic infection). However, the introduction of antibiotic to the polymer matrix diminishes the mechanical strength of the latter. Moreover, the majority of the loaded antibiotic remains embedded in polymer and does not participate in drug elution. Incorporation of the various additives to ALBC can help to overcome these issues. In this paper, four different natural micro/nanoscale materials (halloysite, nanocrystalline cellulose, micro- and nanofibrillated cellulose) were tested as additives to commercial Simplex P bone cement preloaded with vancomycin. The influence of all four materials on the polymerization process was comprehensively studied, including the investigation of the maximum temperature of polymerization, setting time, and monomer leaching. The introduction of the natural additives led to a considerable enhancement of drug elution and microhardness in the composite bone cements compared to ALBC. The best combination of the polymerization rate, monomer leaching, antibiotic release, and microhardness was observed for the sample containing nanofibrillated cellulose (NFC).

4.
Antonie Van Leeuwenhoek ; 116(9): 855-866, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270429

RESUMO

The two novel bacterial strains, designated as VTT and ML, were isolated from roots of cinquefoil (Potentilla sp.) and leaves of meadow-grass (Poa sp.) on the flooded bank of lake, respectively. These isolates were Gram-negative, non-spore-forming, non-motile, rod-shaped cells, utilized methanol, methylamine, and polycarbon compounds as carbon and energy sources. In the whole-cell fatty acid pattern of strains prevailed C18:1ω7c and C19:0cyc. Based on the phylogenetic analysis of 16S rRNA gene sequences, strains VTT and ML were closely related to the representatives of the genus Ancylobacter (98.3-98.5%). The assembled genome of strain VTT has a total length of 4.22 Mbp, and a G + C content is 67.3%. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strain VTT and closely related type strains of genus Ancylobacter were 78.0-80.6%, 73.8-78.3% and 22.1-24.0%, respectively, that clearly lower than proposed thresholds for species. On the basis of the phylogenetic, phenotypic, and chemotaxonomic analysis, isolates VTT and ML represent a novel species of the genus Ancylobacter, for which the name Ancylobacter radicis sp. nov. is proposed. The type strain is VTT (= VKM B-3255T = CCUG 72400T). In addition, novel strains were able to dissolve insoluble phosphates, to produce siderophores and plant hormones (auxin biosynthesis). According to genome analysis genes involved in the biosynthesis of siderophores, polyhydroxybutyrate, exopolysaccharides and phosphorus metabolism, as well as the genes involved in the assimilation of C1-compounds (natural products of plant metabolism) were found in the genome of type strain VTT.


Assuntos
Alphaproteobacteria , Sideróforos , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sideróforos/metabolismo , Alphaproteobacteria/genética , Ácidos Graxos/análise , Plantas , DNA/metabolismo , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Hibridização de Ácido Nucleico
5.
Polymers (Basel) ; 15(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37242889

RESUMO

First introduced in 1954, polyurethane foams rapidly became popular because of light weight, high chemical stability, and outstanding sound and thermal insulation properties. Currently, polyurethane foam is widely applied in industrial and household products. Despite tremendous progress in the development of various formulations of versatile foams, their use is hindered due to high flammability. Fire retardant additives can be introduced into polyurethane foams to enhance their fireproof properties. Nanoscale materials employed as fire-retardant components of polyurethane foams have the potential to overcome this problem. Here, we review the recent (last 5 years) progress that has been made in polyurethane foam modification using nanomaterials to enhance its flame retardance. Different groups of nanomaterials and approaches for incorporating them into foam structures are covered. Special attention is given to the synergetic effects of nanomaterials with other flame-retardant additives.

6.
Antibiotics (Basel) ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551469

RESUMO

Antibiotics guard us against bacterial infections and are among the most commonly used medicines. The immediate consequence of their large-scale production and prescription is the development of antibiotic resistance. Therefore, rapid detection of antibiotic susceptibility is required for efficient antimicrobial therapy. One of the promising methods for rapid antibiotic susceptibility testing is Raman spectroscopy. Raman spectroscopy combines fast and contactless acquisition of spectra with good selectivity towards bacterial cells. The antibiotic-induced changes in bacterial cell physiology are detected as distinct features in Raman spectra and can be associated with antibiotic susceptibility. Therefore, the Raman-based approach may be beneficial in designing therapy against multidrug-resistant infections. The surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RRS) additionally provide excellent sensitivity. In this review, we present an analysis of the Raman spectroscopy-based optical biosensing approaches aimed at antibiotic susceptibility testing.

7.
Data Brief ; 39: 107532, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34805462

RESUMO

Two-phase samples containing water, 2-butoxyethanol, and toluene in the different mass ratios were gravimetrically prepared in the jacketed cells at T=293.15 K and p=0.100 MPa and equilibrated for 24 h. The samples were volumetrically titrated until homogeneous. Then new samples were prepared in the two-phase region with compositions in the immediate proximity to the expected separation boundary and titrated until homogeneous. The critical point was located, keeping the phase ratio of 1:1 during the titration. The density of homogeneous samples obtained during titration was measured using the density meter. These data were used to construct an interpolation of the density along the separation boundary. New two-phase samples were prepared; the interfacial tension, density, and viscosity were measured. Thus, interfacial tension isotherm and viscosity isotherm were obtained using density interpolation to determine the composition of the equilibrated phases. The obtained data can be used to prepare the two-phase samples with desired properties, design the oil-water separation processes, and develop new oil spill dispersants containing 2-butoxyethanol. This article is a co-submission with a paper [1].

8.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34694985

RESUMO

A psychrotolerant facultative anaerobe, strain SKBGT, was isolated from the bottom sediments of the cold mineral spring Buxichen (Buryatia, Russia). Gram-positive non-motile cocci with a diameter of 1.75-2.5 µm were observed singly or in long chains. Cells grew in the temperature range from ̶ 5-35 °C. Growth was observed within the pH range of 7.0-9.5, with the optimum growth at pH 7.6 and at a NaCl concentration from 0-1.0 % (optimum 0.1 % (w/v)). Strain SKBGT was a chemoorganoheterotroph that used sugars and some organic acids as substrates. The predominant fatty acids in cell walls were С16:1ω9, С18:1ω9, and С16 : 0. The 16S rRNA gene sequence of strain SKBGT shared high similarity (>99 %) with those of the type strains of the genus Trichococcus. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKBGT and Trichococcus shcherbakoviae ArtT (=DSM 107162T=VKM B-3260T) were 70.1 and 95.4 %, respectively. The genomic DNA G+C content of strain SKBGT was 47.1 mol%. Compared with the type strain of T. shcherbakoviae, the new strain was characterized by a temperature optimum for growth (10 °C) significantly lower than that of T. shcherbakoviae DSM 107162T (20-30 °C). Based on phenotypic and genomic characteristics, the isolate SKBGT was classified as T. shcherbakoviae subsp. psychrophilus subsp. nov. The type strain is SKBGT (=VKM B-3241Т=JCM 33326T).


Assuntos
Carnobacteriaceae/classificação , Nascentes Naturais/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Carnobacteriaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA
9.
ACS Omega ; 6(39): 25828-25834, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632238

RESUMO

Applying the eutectic hydrated salt (EHS) mixture of Na2HPO4·12H2O and Na2SO4·10H2O in a 1:1 weight ratio as a phase-change material and natural sepiolite nanocarriers as a matrix, the form-stable phase-change composite EHS@sepiolite was fabricated by vacuum impregnation. Due to the high porosity of sepiolite and its nanofibrous structure with internal channels, the effective loading of the phase-change material reached as high as 88 wt %. The melting temperature of the composite was 38.1 °C and its melting enthalpy was 185 J g-1. The crystallinity of the hydrated salt mixture was retained after loading into the sepiolite matrix. The composite demonstrated high stability over 50 heat uptake/release cycles maintaining its melting temperature and melting enthalpy the same. The combination of natural sepiolite nanocarriers and crystallohydrates is a cheap and efficient nanoscale energy storage system with high potential for practical applications and upscaling because of their natural abundance.

10.
Polymers (Basel) ; 13(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34685269

RESUMO

Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34255623

RESUMO

A novel, spore-forming, acidophilic and metal-resistant sulfate-reducing bacterium, strain OLT, was isolated from a microbial mat in a tailing dam at a gold ore mining site. Cells were slightly curved immotile rods, 0.5 µm in diameter and 2.0-3.0 µm long. Cells were stained Gram-negative, despite the Gram-positive cell structure revealed by electron microscopy of ultrathin layers. OLT grew at pH 4.0-7.0 with an optimum at 5.5. OLT utilised H2, lactate, pyruvate, malate, formate, propionate, ethanol, glycerol, glucose, fructose, sucrose, peptone and tryptone as electron donors for sulfate reduction. Sulfate, sulfite, thiosulfate, nitrate and fumarate were used as electron acceptors in the presence of lactate. Elemental sulfur, iron (III), and arsenate did not serve as electron acceptors. The major cellular fatty acids were C16:1ω7c (39.0 %) and C16 : 0 (12.1 %). The draft genome of OLT was 5.29 Mb in size and contained 4909 protein-coding genes. The 16S rRNA gene sequence placed OLT within the phylum Firmicutes, class Clostridia, family Peptococcaceae, genus Desulfosporosinus. Desulfosporosinus nitroreducens 59.4BT was the closest relative with 97.6 % sequence similarity. On the basis of phenotypic and phylogenetic characteristics, strain OLT represents a novel species within the genus Desulfosporosinus, for which we propose the name Desulfosporosinus metallidurans sp. nov. with the type strain OLT (=DSM 104464T=VKM В-3021T).


Assuntos
Mineração , Peptococcaceae/classificação , Filogenia , Ácidos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Oxirredução , Peptococcaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Sulfatos/metabolismo
12.
Biochem Biophys Res Commun ; 546: 145-149, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33582557

RESUMO

In times of widespread multiple antibiotic resistance, the bacterial colonization of crucial medical surfaces should be detected as fast as possible. In this work, we present the non-destructive SERS method for the detection of bacterial colonization. SERS is an excellent tool for the monitoring of suitable substances in low concentrations. The SERS substrate was prepared by the aggregation of citrate-stabilized gold nanoparticles and the adsorption of the reporters (crystal violet, thiamine, and adenine). We have tested the substrate for the detection of clinically relevant S. aureus and P. aeruginosa bacteria. The SERS spectra before and after the substrate incubation revealed the degradation of the reporter by the growing bacteria. The growth of P. aeruginosa was detected using the substrates with preadsorbed crystal violet or adenine. The suitable reporter for the detection of S. aureus remains to be discovered. The selection of the reporters resistant to exposure but easily degraded by bacteria will open the way for the in situ monitoring of bacterial colonization, thus complementing the arsenal of methods in the battle against hospital infections.


Assuntos
Adenina/química , Violeta Genciana/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Análise Espectral Raman/métodos , Ácido Cítrico/química , Ouro/química , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Sondas Moleculares/análise , Sondas Moleculares/química , Staphylococcus aureus , Tiamina/química
13.
Langmuir ; 35(41): 13480-13487, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31545051

RESUMO

Nonionic hydrotropes (low-molecular-weight amphiphiles) demonstrate striking dual actions in bulk solutions and interfaces, exhibiting both surfactant-like and co-solvent properties. We report on peculiar, strongly affected by this duality, liquid-liquid and air-liquid-liquid interfacial behavior in aqueous ternary systems, containing hydrotropes and hydrocarbons, in a broad range of compositions and at various temperatures. Phase diagrams of the studied systems, containing tertiary butanol (TBA), as a hydrotrope, are of Type 1: the hydrotrope, at the experimental conditions, is completely miscible with water and with all investigated hydrocarbons [cyclohexane (CHX), toluene (TOL), and n-decane (DEC)], whereas the ternary mixtures exhibit liquid-liquid phase separation terminated at corresponding critical points. The shape and location of the phase separation boundary are only weakly dependent on temperature and the hydrocarbon's nature; however, the critical point in the water-TBA-DEC system is significantly shifted toward a higher TBA concentration. For the experimentally studied systems and for available data reported in the literature, we confirmed an apparently generic (for nonionic hydrotropes) phenomenon of a dual action at water-oil interfaces (earlier found in water-TBA-CHX [J. Phys. Chem. C 2017, 121, 16423]): at low concentrations, hydrotropes saturate the water-oil interface like a surfactant, whereas at higher concentrations they act as co-solvents, resulting in vanishing interfacial tension at the liquid-liquid critical point. We suggest a universal crossover function that accurately interpolates the two theoretically based limits of interfacial behavior. This crossover function also accounts for earlier deviations from Langmuir-von Szyszkowski limiting behavior in the water-TBA-DEC system, caused by lower solubility (relative to other studied hydrocarbons) of DEC in water. An intriguing correlation between the dual action of hydrotropes at the water-oil interface and the behavior of the liquid-air interfaces is also discussed.

14.
Front Microbiol ; 10: 1284, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293526

RESUMO

In skin, Cutibacterium acnes (former Propionibacterium acnes) can behave as an opportunistic pathogen, depending on the strain and environmental conditions. Acneic strains of C. acnes form biofilms inside skin-gland hollows, inducing inflammation and skin disorders. The essential exogenous products of C. acnes accumulate in the extracellular matrix of the biofilm, conferring essential bacterial functions to this structure. However, little is known about the actual composition of the biofilm matrix of C. acnes. Here, we developed a new technique for the extraction of the biofilm matrix of Gram-positive bacteria without the use of chemical or enzymatic digestion, known to be a source of artifacts. Our method is based on the physical separation of the cells and matrix of sonicated biofilms by ultracentrifugation through a CsCl gradient. Biofilms were grown on the surface of cellulose acetate filters, and the biomass was collected without contamination by the growth medium. The biofilm matrix of the acneic C. acnes RT5 strain appears to consist mainly of polysaccharides. The following is the ratio of the main matrix components: 62.6% polysaccharides, 9.6% proteins, 4.0% DNA, and 23.8% other compounds (porphyrins precursors and other). The chemical structure of the major polysaccharide was determined using a nuclear magnetic resonance technique, the formula being →6)-α-D-Galp-(1→4)-ß-D-ManpNAc3NAcA-(1→6)-α-D-Glcp-(1→4)-ß-D-ManpNAc3NAcA-(1→3)-ß-GalpNAc-(1→. We detected 447 proteins in the matrix, of which the most abundant were the chaperonin GroL, the elongation factors EF-Tu and EF-G, several enzymes of glycolysis, and proteins of unknown function. The matrix also contained more than 20 hydrolases of various substrata, pathogenicity factors, and many intracellular proteins and enzymes. We also performed surface-enhanced Raman spectroscopy analysis of the C. acnes RT5 matrix for the first time, providing the surface-enhanced Raman scattering (SERS) profiles of the C. acnes RT5 biofilm matrix and biofilm biomass. The difference between the matrix and biofilm biomass spectra showed successful matrix extraction rather than simply the presence of cell debris after sonication. These data show the complexity of the biofilm matrix composition and should be essential for the development of new anti-C. acnes biofilms and potential antibiofilm drugs.

15.
Int J Syst Evol Microbiol ; 68(9): 2912-2917, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30016228

RESUMO

A facultative anaerobic, rod-shaped, endospore-forming and non-motile bacterium was isolated from permafrost sediment cores in the Kolyma lowland, Siberia, Russia. The permafrost isolate clustered with members of the genus Cohnella on the basis of 16S rRNA gene sequence analysis and showed the highest sequence similarity to Cohnella saccharovorans CJ22T (96.3 %), followed by Cohnella cellulosilytica FCN3-3T (96.0 %) and Cohnella panacarvi KCTC 13060T (96.0 %). The chemotaxonomic characteristics (quinone system, cellular fatty acids and polar lipid profile) of strain 20.16T were consistent with members of the genus Cohnella. The peptidoglycan diaminoacids included meso-diaminopimelic acid and a small amount of ll-diaminopimelic acid. The molar ratio and composition of major amino acids (meso-diaminopimelic acid, alanine, and glutamic acid) correspond to the peptydoglycan type A1γ. The estimated genome size of strain 20.16T is 4.34 Mb (lower than those in other Cohnella species). The genome has a G+C content of 50.5 mol% and encodes 4843 predicted genes, of these 4740 are protein-coding ones. The results of chemotaxonomic, physiological and biochemical characterization allowed clear differentiation of strain 20.16T from the closest Cohnella species. Based on data provided, a new species Cohnella kolymensis sp. nov. is proposed, with 20.16T (=VKM B-2846T=DSM 104983T) as the type strain.


Assuntos
Bacillales/classificação , Pergelissolo/microbiologia , Filogenia , Microbiologia do Solo , Bacillales/genética , Bacillales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sibéria , Vitamina K 2/química
16.
Nanomaterials (Basel) ; 8(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857546

RESUMO

Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and CdxZn1-xS nanoparticles with sizes of 6⁻8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube's surface). The halloysite⁻QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite⁻QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for CdxZn1-xS QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite⁻QD systems allows for their promising usage as markers for biomedical applications.

17.
Int J Syst Evol Microbiol ; 67(6): 1990-1995, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28632119

RESUMO

A novel alkaliphilic spore-forming bacterium was isolated from the benthic sediments of the highly mineralized steppe Lake Khilganta (Transbaikal Region, Russia). Cells of the strain, designated Ð¥-07-2T, were straight to slightly curved rods, Gram-stain-positive and motile. Strain Ð¥-07-2T grew in the pH range from 7.0 to 10.7 (optimum pH 9.6-10.3). Growth was observed at 25-47 °C (optimum 30 °C) and at an NaCl concentration from 5 to 150 g l-1 with an optimum at 40 g l-1. Strain Ð¥-07-2T was a chemo-organoheterotroph able to reduce amorphous ferric hydroxide, Fe(III) citrate and elemental sulfur in the presence of yeast extract as the electron donor. It used tryptone, peptone and trypticase with Fe(III) citrate as the electron acceptor. The predominant fatty acids in cell walls were C16:1ω8, iso-C15:0, C14 : 0 3-OH and C16 : 0. The DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis revealed that strain Ð¥-07-2T was related most closely to members of the genus Alkaliphilus within the family Clostridiaceae. The closest relative was Alkaliphilus peptidifermentans Z-7036T (96.4 % similarity). On the basis of the genotypic, chemotaxonomic and phenotypic data, strain Ð¥-07-2T represents a novel species in the genus Alkaliphilus, for which the name Alkaliphilus namsaraevii sp. nov. is proposed. The type strain is Ð¥-07-2T (=VKM В-2746Т=DSM 26418Т).


Assuntos
Clostridiales/classificação , Lagos/microbiologia , Filogenia , Bactérias Redutoras de Enxofre/classificação , Álcalis , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/genética , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Compostos Férricos/metabolismo , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Enxofre , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
18.
Int J Syst Evol Microbiol ; 67(5): 1457-1461, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27974092

RESUMO

A novel strictly anaerobic, thermotolerant, moderately halophilic, organotrophic bacterium, strain MRo-4T, was isolated from a sample of a microbial mat, developed under the flow of subsurface water in TauTona gold mine, South Africa. Cells of the novel isolate stained Gram-positive and were motile, spore-forming rods, 0.2-0.3 µm in width and 5-20 µm in length. Strain MRo-4T grew at 25-50 °C, at pH 7.0-8.8 and at an NaCl concentration of 5-100 g l-1. The isolate was able to ferment yeast extract, peptone and mono-, oligo- and polysaccharides, including cellulose and chitin. Elemental sulfur, thiosulfate, sulfate, sulfite, nitrate, nitrite, fumarate and arsenate were not reduced. The major fatty acids were iso-C15 : 0, iso-C15 : 0 dimethyl acetyl and anteiso-C15 : 0. The G+C content of the DNA was 32.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences of strain MRo-4T and its nearest relatives showed its affiliation to the genus Sporosalibacterium. Sporosalibacteriumfaouarense SOL3f37T, the only valid published representative of the genus, appeared to be its closest relative (96.8 % 16S rRNA gene sequence similarity). However, strains MRo-4T and S. faouarense SOL3f37T differed in temperature, pH and salinity ranges for growth, requirement for yeast extract and substrate profiles. Based on the phylogenetic analysis and physiological properties of the novel isolate, we propose a novel species, Sporosalibacterium tautonense sp. nov. The type strain is MRo-4T (=DSM 28179T=VKM B-2948T).


Assuntos
Clostridiales/classificação , Mineração , Filogenia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/genética , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Ouro , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul
19.
Int J Syst Evol Microbiol ; 66(7): 2515-2519, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27082267

RESUMO

A thermophilic, anaerobic, chemolithoautotrophic bacterium, strain SH388T, was isolated from a shallow, submarine hydrothermal vent (Kuril Islands, Russia). Cells of strain SH388T were Gram-stain-negative short rods, 0.2-0.4 µm in diameter and 1.0-2.5 µm in length, and motile with flagella. The temperature range for growth was 25-58 °C (optimum 50 °C), and the pH range for growth was pH 5.0-7.0 (optimum pH 6.0-6.5). Growth of strain SH388T was observed in the presence of NaCl concentrations ranging from 0.5 to 4.0 % (w/v) (optimum 2.0-2.5 %). The strain grew chemolithoautotrophically with molecular hydrogen as electron donor, sodium sulfite as electron acceptor and bicarbonate/CO2 as a carbon source. It was also able to grow by disproportionation of sulfite and elemental sulfur but not thiosulfate. Sulfate, Fe(III) and nitrate were not used as electron acceptors either with H2 or organic electron donors. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the class Deltaproteobacteria and was most closely related to Dissulfuribacter thermophilus and Dissulfurimicrobium hydrothermale (91.6 % and 90.4 % sequence similarity). On the basis of its physiological properties and results of phylogenetic analyses, strain SH388T is considered to represent a novel species of a new genus, for which the name Dissulfurirhabdus thermomarina gen. nov., sp. nov. is proposed. The type strain of the species is SH388T (=DSM 100025T=VKM B-2960T). It is the first thermophilic disproportionator of sulfur compounds isolated from a shallow-sea environment.


Assuntos
Deltaproteobacteria/classificação , Fontes Hidrotermais/microbiologia , Filogenia , Água do Mar/microbiologia , Processos Autotróficos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Sulfitos/metabolismo , Enxofre/metabolismo
20.
Int J Syst Evol Microbiol ; 65(12): 4315-4322, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26341497

RESUMO

An anaerobic, saccharolytic bacterial strain designated GLS2T was isolated from aggregates of the psychrotolerant archaeon Methanosarcina mazei strain JL01 isolated from arctic permafrost. Bacterial cells were non-motile, spherical, ovoid and annular with diameter 0.2-4 µm. They were chemoorganoheterotrophs using a wide range of mono-, di- and trisaccharides as carbon and energy sources. The novel isolate required yeast extract and vitamins for growth. The bacteria exhibited resistance to a number of ß-lactam antibiotics, rifampicin, streptomycin and vancomycin. Optimum growth was observed between 30 and 34 °C, at pH 6.8-7.5 and with 1-2 g NaCl l- 1. Isolate GLS2T was a strict anaerobe but it tolerated oxygen exposure. On the basis of 16S rRNA gene sequence similarity, strain GLS2T was shown to belong to the genus Sphaerochaeta within the family Spirochaetaceae. Its closest relatives were Sphaerochaeta globosa BuddyT (99.3 % 16S rRNA gene sequence similarity) and Sphaerochaeta pleomorpha GrapesT (95.4 % similarity). The G+C content of DNA was 47.2 mol%. The level of DNA-DNA hybridization between strains GLS2T and BuddyT was 34.7 ± 8.8 %. Major polar lipids were phosphoglycolipids, phospholipids and glycolipids; major fatty acids were C14 : 0, C16 : 0, C16 : 0 3-OH, C16 : 0 dimethyl acetal (DMA), C16 : 1n8 and C16 : 1 DMA; respiratory quinones were not detected. The results of DNA-DNA hybridization, physiological and biochemical tests demonstrated genotypic and phenotypic differentiation of strain GLS2T from the four species of the genus Sphaerochaeta with validly published names that allowed its separation into a new lineage at the species level. Strain GLS2T therefore represents a novel species, for which the name Sphaerochaeta associata sp. nov. is proposed, with the type strain GLS2T ( = DSM 26261T = VKM B-2742T).


Assuntos
Methanosarcina , Pergelissolo/microbiologia , Filogenia , Spirochaetaceae/classificação , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Spirochaetaceae/genética , Spirochaetaceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...