Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732662

RESUMO

The goal of the study was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology, as these determine their successful biointegration. The morphological and chemical structure of Vortex plate anodized titanium from commercially pure (CP) Grade 2 Titanium (Ti2) is generally used in the following; non-cemented total hip replacement (THR) stem and cup Ti alloy (Ti6Al4V) with titanium plasma spray (TPS) coating; cemented THR stem Stainless steel (SS); total knee replacement (TKR) femoral component CoCrMo alloy (CoCr); cemented acetabular component from highly cross-linked ultrahigh molecular weight polyethylene (HXL); and cementless acetabular liner from ultrahigh molecular weight polyethylene (UHMWPE) (Sanatmetal, Ltd., Eger, Hungary) discs, all of which were examined. Visualization and elemental analysis were carried out by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. TPS Ti presented the highest Ra value (25 ± 2 µm), followed by CoCr (535 ± 19 nm), Ti2 (227 ± 15 nm) and SS (170 ± 11 nm). The roughness measured in the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements regarding the investigated prosthesis materials. XPS results supported the EDS results and revealed a high % of Ti4+ on Ti2 and TPS surfaces. The results indicate that the surfaces of prosthesis materials have significantly different features, and a detailed characterization is needed to successfully apply them in orthopedic surgery and traumatology.

2.
Membranes (Basel) ; 13(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37505022

RESUMO

Membrane separation processes are promising methods for wastewater treatment. Membrane fouling limits their wider use; however, this may be mitigated using photocatalytic composite materials for membrane preparation. This study aimed to investigate photocatalytic polyvinylidene fluoride (PVDF)-based nanocomposite membranes for treating model dairy wastewater containing bovine serum albumin (BSA). Membranes were fabricated via physical coating (with TiO2, and/or carbon nanotubes, and/or BiVO4) and blending (with TiO2). Another objective of this study was to compare membranes of identical compositions fabricated using different techniques, and to examine how various TiO2 concentrations affect the antifouling and cleaning performances of the blended membranes. Filtration experiments were performed using a dead-end cell. Filtration resistances, BSA rejection, and photocatalytic cleanability (characterized by flux recovery ratio (FRR)) were measured. The surface characteristics (SEM, EDX), roughness (measured by atomic force microscopy, AFM), wettability (contact angle measurements), and zeta potential of the membranes were also examined. Coated PVDF membranes showed higher hydrophilicity than the pristine PVDF membrane, as evidenced by a decreased contact angle, but the higher hydrophilicity did not result in higher fluxes, unlike the case of blended membranes. The increased surface roughness resulted in increased reversible fouling, but decreased BSA retention. Furthermore, the TiO2-coated membranes had a better flux recovery ratio (FRR, 97%) than the TiO2-blended membranes (35%). However, the TiO2-coated membrane had larger total filtration resistances and a lower water flux than the commercial pristine PVDF membrane and TiO2-blended membrane, which may be due to pore blockage or an additional coating layer formed by the nanoparticles. The BSA rejection of the TiO2-coated membrane was lower than that of the commercial pristine PVDF membrane. In contrast, the TiO2-blended membranes showed lower resistance than the pristine PVDF membrane, and exhibited better antifouling performance, superior flux, and comparable BSA rejection. Increasing the TiO2 content of the TiO2-blended membranes (from 1 to 2.5%) resulted in increased antifouling and comparable BSA rejection (more than 95%). However, the effect of TiO2 concentration on flux recovery was negligible.

3.
Sci Rep ; 13(1): 10242, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353524

RESUMO

The increasing prevalence of water insoluble or poorly soluble drugs calls for the development of new formulation methods. Common approaches include the reduction of particle size and degree of crystallinity. Pulsed laser ablation is a clean technique for producing sub-micrometre sized drug particles and has the potential to induce amorphization. We studied the effect of femtosecond pulsed laser ablation (ELI ALPS THz pump laser system: λc = 781 nm, τ = 135 fs) on meloxicam in distilled water and in air. The ablated particles were characterized chemically, morphologically and in terms of crystallinity. We demonstrated that femtosecond laser ablation can induce partial amorphization of the particles in addition to a reduction in particle size. In the case of femtosecond pulsed laser ablation in air, the formation of pure meloxicam spheres showed that this technique can produce amorphous meloxicam without the use of excipients, which is a unique result. We also aimed to describe the ablation processes in both investigated media.


Assuntos
Terapia a Laser , Lasers , Meloxicam , Terapia a Laser/métodos , Excipientes , Água
4.
Heliyon ; 8(9): e10764, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36193518

RESUMO

Objectives: The influence of energy drinks on dental materials are relatively under addressed. Our aim was to investigate the effect of energy drinks on dental materials used intraorally in young individuals. Commonly used preventive, restorative, and orthodontic materials were tested in vitro. Methods: The effect of two commercially available energy drinks (HELL, BURN) was investigated on different dental materials: machined, anodized Titanium (grade 5: Ti6Al4V) and composites (Grandio Seal, VOCO; Filtek Z250, 3M ESPE; Estelite SQ, TOKUYAMA). The roughness (Ra) and morphological changes were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results: AFM and SEM revealed significant differences in the Ra and morphology of the samples. AFM results for the machined and anodized titanium samples showed that the two energy drinks modified the surface roughness differently; BURN changed the roughness of machined samples significantly, while anodized discs were not altered significantly by the two energy drinks. In case of composite samples there was no significant difference for the Estelite SQ, relative low differences for the Filtek Z250 and significant changes in the morphology and surface roughness of Grandio Seal. Significance: On all tested materials, changes in the surface roughness and morphology were more or less detected, proving energy drinks do in fact have a harmful effect. It can be concluded that material erosion depends on the material composition and particle arrangement. Where the surface is characterized by a regular, uniform particle arrangement, energy drinks are less able to influence the roughness, while for samples where the surface is rich in aggregates, the material erodes the surface much more easily.

5.
Heliyon ; 8(8): e10263, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36042714

RESUMO

Objectives: Soft tissue integration of dental implants lags behind natural biological integration of teeth mainly because of non-optimal surface features. Peri-implant infections resulting in loss of supporting bone jeopardize the success of implants. Our aim was to compare an anodized surface design with a turned one for a more optimal surface. Methods: Morphological and chemical structures of turned and anodized Ti surfaces (grade 5: Ti6Al4V) discs were examined by scanning electron microscopy (SEM-EDS), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM). The hydrophilic or hydrophobic features of the surfaces were determined by dynamic contact angle measurement. Results: SEM and AFM revealed significant differences in the morphology and roughness (Ra) of the samples. Anodized discs presented a granular structure, while turned ones had circular grooves. The roughness was significantly higher for the anodized samples compared to the turned ones. XPS and EDS confirmed typical elements for both Ti6Al4V samples. Due to anodization, the amount of Ti (IV) had increased and Ti (III) had decreased in the thicker oxide layer. Anodized samples resulted in a more hydrophilic surface than the turned ones. Significance: The results suggest that the tested anodized samples present optimal surface characteristics to be used as abutment material for an optimal soft tissue integration.

6.
Chemosphere ; 307(Pt 1): 135589, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803379

RESUMO

Enhancing the performance of polymeric membranes by nanomaterials has become of great interest in the field of membrane technology. The present work aimed to fabricate polyvinylidene fluoride (PVDF)-hybrid nanocomposite membranes and modify them with TiO2 and/or BiVO4 nanoparticles and/or carbon nanotubes (CNTs) in various ratios. Their photocatalytic performance under visible light was also investigated. All modified PVDF membranes exhibited higher hydrophilicity (lower contact angle of water droplets) than that of the neat membrane used as a reference. The membranes were characterized by using bovine serum albumin (BSA) as model dairy wastewater. The hybrid membranes had better antifouling properties as they had lower irreversible filtration resistance than that of the neat membrane. Hybrid PVDF membranes containing TiO2/CNT/BiVO4 showed the highest flux and lowest irreversible resistance during the filtration of the BSA solution. PVDF-TiO2/BiVO4 had the highest flux recovery ratio under visible light (70% for the PVDF mixed with 0.5% TiO2 and 0.5% BiVO4). The hydrophilicity of membrane surfaces increased with the incorporation of nanoparticles, preventing BSA to bind to the surface. This resulted in a slight decrease in BSA and chemical oxygen demand rejections, which were still above 97% in all cases.


Assuntos
Nanocompostos , Nanotubos de Carbono , Purificação da Água , Polímeros de Fluorcarboneto , Luz , Membranas Artificiais , Polivinil , Soroalbumina Bovina/química , Titânio , Ultrafiltração , Águas Residuárias , Água
7.
Sci Rep ; 12(1): 12551, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869132

RESUMO

Recently, the number of water insoluble and poorly soluble drug compounds has increased significantly. Therefore, growing interest has been witnessed in different particle size reduction techniques to improve the dissolution rates, transport characteristics and bioavailability of drugs. Laser ablation has proven to be an alternative method to the production of nano- and micrometre-sized drug particles without considerable chemical damage. We present the nanosecond laser ablation of drug pastilles in distilled water, targeting meloxicam, a poorly water soluble nonsteroidal anti-inflammatory drug, at different laser wavelengths (248 nm, 532 nm and 1064 nm). Besides chemical characterization, crystallinity, morphology and particle size studies, the mechanism of the particle generation process was examined. The applicability of ablated particles in drug formulation was investigated by solubility, cytotoxicity and anti-inflammatory effect measurements. We showed that laser ablation is a clean, efficient and chemically non-damaging method to reduce the size of meloxicam particles to the sub-micrometre-few micrometre size range, which is optimal for pulmonary drug delivery. Complemented by the excellent solubility (four to nine times higher) and anti-inflammatory (four to five times better) properties of the particles compared to the initial drug, laser ablation is predicted to have wider applications in the development of drug formulations.


Assuntos
Terapia a Laser , Nanopartículas , Composição de Medicamentos/métodos , Meloxicam , Nanopartículas/química , Tamanho da Partícula , Solubilidade , Água
8.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459029

RESUMO

We have successfully demonstrated that although there are significant analytical challenges involved in the qualitative discrimination analysis of sub-mm sized (microfragment) glass samples, the task can be solved with very good accuracy and reliability with the multivariate chemometric evaluation of laser-induced breakdown spectroscopy (LIBS) data or in combination with pre-screening based on refractive index (RI) data. In total, 127 glass samples of four types (fused silica, flint, borosilicate and soda-lime) were involved in the tests. Four multivariate chemometric data evaluation methods (linear discrimination analysis, quadratic discrimination analysis, classification tree and random forest) for LIBS data were evaluated with and without data compression (principal component analysis). Classification tree and random forest methods were found to give the most consistent and most accurate results, with classifications/identifications correct in 92 to 99% of the cases for soda-lime glasses. The developed methods can be used in forensic analysis.


Assuntos
Lasers , Refratometria , Vidro , Reprodutibilidade dos Testes , Análise Espectral/métodos
9.
Nanotechnology ; 32(39)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34139677

RESUMO

Spark ablation, a versatile, gas-phase physical nanoparticle synthesis method was employed to fabricate fiber-optic surface enhanced Raman scattering (SERS) sensors in a simple single-step process. We demonstrate that spark-generated silver nanoparticles can be simply deposited onto a fiber tip by means of a modified low-pressure inertial impactor, thus providing significant surface enhancement for fiber-based Raman measurements. The surface morphology of the produced sensors was characterized along with the estimation of the enhancement factor and the inter- and intra-experimental variation of the measured Raman spectrum as well as the investigation of the concentration dependence of the SERS signal. The electric field enhancement over the deposited silver nanostructure was simulated in order to facilitate the better understanding of the performance of the fabricated SERS sensors. A potential application in the continuous monitoring of a target molecule was demonstrated on a simple model system.

10.
Nanomaterials (Basel) ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924560

RESUMO

In pharmaceutical development, more and more drugs are classified as poorly water-soluble or insoluble. Particle size reduction is a common way to fight this trend by improving dissolution rate, transport characteristics and bioavailability. Pulsed laser ablation is a ground-breaking technique of drug particle generation in the nano- and micrometer size range. Meloxicam, a commonly used nonsteroidal anti-inflammatory drug with poor water solubility, was chosen as the model drug. The pastille pressed meloxicam targets were irradiated by a Ti:sapphire laser (τ = 135 fs, λc = 800 nm) in air and in distilled water. Fourier transform infrared and Raman spectroscopies were used for chemical characterization and scanning electron microscopy to determine morphology and size. Additional particle size studies were performed using a scanning mobility particle sizer. Our experiments demonstrated that significant particle size reduction can be achieved with laser ablation both in air and in distilled water without any chemical change of meloxicam. The size of the ablated particles (~50 nm to a few microns) is approximately at least one-tenth of the size (~10-50 micron) of commercially available meloxicam crystals. Furthermore, nanoaggregate formation was described during pulsed laser ablation in air, which was scarcely studied for drug/organic molecules before.

11.
Sci Rep ; 10(1): 15806, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978489

RESUMO

We studied the application of pulsed laser ablation (PLA) for particle size reduction in non-steroidal anti-inflammatory drugs (NSAIDs). Grinding of the poorly water-soluble NSAID crystallites can considerably increase their solubility and bioavailability, thereby the necessary doses can be reduced significantly. We used tablets of ibuprofen, niflumic acid and meloxicam as targets. Nanosecond laser pulses were applied at various wavelengths (KrF excimer laser, λ = 248 nm, FWHM = 18 ns and Nd:YAG laser, λ1 = 532 nm/λ2 = 1064 nm, FWHM = 6 ns) and at various fluences. FTIR and Raman spectra showed that the chemical compositions of the drugs had not changed during ablation at 532 nm and 1064 nm laser wavelengths. The size distribution of the ablated products was established using two types of particle size analyzers (SMPS and OPC) having complementary measuring ranges. The mean size of the drug crystallites decreased from the initial 30-80 µm to the submicron to nanometer range. For a better understanding of the ablation mechanism we made several investigations (SEM, Ellipsometry, Fast photography) and some model calculations. We have established that PLA offers a chemical-free and simple method for the size reduction of poorly water-soluble drugs and a possible new way for pharmaceutical drug preformulation for nasal administration.


Assuntos
Anti-Inflamatórios não Esteroides/química , Ibuprofeno/química , Terapia a Laser/métodos , Meloxicam/química , Ácido Niflúmico/química , Anti-Inflamatórios não Esteroides/efeitos da radiação , Ibuprofeno/efeitos da radiação , Lasers de Estado Sólido , Meloxicam/efeitos da radiação , Ácido Niflúmico/efeitos da radiação , Tamanho da Partícula
12.
J Nanosci Nanotechnol ; 18(6): 3916-3924, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442727

RESUMO

Failure of dental implants is caused mainly by peri-implant infections resulting in loss of supporting bone. Since there is no ideal therapy of peri-implantitis, the focus of research has been shifted toward better prevention and the development of antibacterial surfaces. In our study we examined the attachment and proliferation of primary epithelial and MG-63 osteosarcoma cells on Ti dental implants coated with photocatalytic nanohybrid films. Two polyacrylate resin based layers were investigated on commercially pure (CP4) Ti discs: 60 wt% TiO2/40 wt% copolymer and 60 wt% Ag-TiO2/40 wt% copolymer ([Ag] = 0,001 wt%). Surface properties were examined by scanning electron microscopy (SEM) and profilometry. Cell responses were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and visualized with fluorescence microscopy. Profilometry revealed significant changes in surface roughness of TiO2 (Ra = 1.79 µm) and Ag-TiO2 layers (Ra = 5.76 µm) compared to the polished (Ra(P) = 0.13 µm) and sandblasted, acid-etched control surfaces (Ra(SA) = 1.26 µm). MTT results demonstrated that the attachment (24 h) of epithelial cells was significantly higher on the Ag-TiO2 coated samples (OD540 = 0.079) than on the polished control surfaces (OD540 = 0.046), whereas MG-63 cells did not show any difference in attachment between the groups. After one week, epithelial cells showed slightly increased survival as compared to MG-63 cells. The results suggest that the tested coatings are cytocompatible with epithelial cells, which means that they are not only antibacterial, but they also appear to be promising candidates for implantological use.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanocompostos , Titânio , Implantes Dentários , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
13.
J Biomater Appl ; 31(1): 55-67, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26896235

RESUMO

Antibacterial surfaces have been in the focus of research for years, driven by an unmet clinical need to manage an increasing incidence of implant-associated infections. The use of silver has become a topic of interest because of its proven broad-spectrum antibacterial activity and track record as a coating agent of soft tissue implants and catheters. However, for the time being, the translation of these technological achievements for the improvement of the antibacterial property of hard tissue titanium (Ti) implants remains unsolved. In our study, we focused on the investigation of the photocatalysis mediated antibacterial activity of silver (Ag), and Ti nanoparticles instead of their pharmacological effects. We found that the photosensitisation of commercially pure titanium discs by coating them with an acrylate-based copolymer that embeds coupled Ag/Ti nanoparticles can initiate the photocatalytic decomposition of adsorbed S. salivarius after the irradiation with an ordinary visible light source. The clinical isolate of S. salivarius was characterised with MALDI-TOF mass spectrometer, while the multiplication of the bacteria on the surface of the discs was followed-up by MTT assay. Concerning practical relevance, the infected implant surfaces can be made accessible and irradiated by dental curing units with LED and plasma arc light sources, our research suggests that photocatalytic copolymer coating films may offer a promising solution for the improvement of the antibacterial properties of dental implants.


Assuntos
Materiais Revestidos Biocompatíveis/administração & dosagem , Implantes Dentários/microbiologia , Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Streptococcus salivarius/efeitos dos fármacos , Titânio/química , Adsorção , Antibacterianos/administração & dosagem , Antibacterianos/química , Catálise , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Luz , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Polímeros/química , Prata/química , Streptococcus salivarius/crescimento & desenvolvimento , Propriedades de Superfície/efeitos da radiação , Titânio/administração & dosagem , Titânio/efeitos da radiação
14.
Mater Sci Eng C Mater Biol Appl ; 33(7): 4251-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23910340

RESUMO

Demand is increasing for shortening the long (3-6 months) osseointegration period to rehabilitate patients' damaged chewing apparatus in as short a time as possible. For dental implants, as for biomaterials in general, the bio- and osseointegration processes can be controlled at molecular and cellular levels by modification of the implant surface. One of the most promising of such surface modifications is laser ablation, as demonstrated by our previous results [46]. Commercially pure (CP4) sand-blasted, acid-etched titanium disks (Denti® System Ltd., Hungary) were irradiated with a KrF excimer laser (248 nm, fluence 0.4 J/cm(2), FWHM 18 ns, 2000 pulses), or with a Nd:YAG laser (532 nm, 1.3 J/cm(2), 10 ns, 200 pulses) then examined by SEM, AFM, and XPS. In vitro attachment (24 h) and proliferation (72 h) of MG-63 osteoblast cells were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT), alamarBlue (AB) assays alkaline phosphatase quantification (ALP) and SEM. SEM and AFM revealed significant changes in morphology and roughness. XPS confirmed the presence of TiO2 on each sample; after Nd:YAG treatment a reduced state of Ti (Ti(3+)) was also observed. MTT, AB and ALP measurements detected an increase in the number of cells between the 24- and 72 hour observations; however, laser treatment did not affect cell attachment and proliferation significantly.


Assuntos
Materiais Biocompatíveis/farmacologia , Implantes Dentários , Lasers , Osteoblastos/citologia , Titânio/farmacologia , Condicionamento Ácido do Dente , Fosfatase Alcalina/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Microscopia de Força Atômica , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteoblastos/ultraestrutura , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...