Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; 29(27)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28466539

RESUMO

Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double-layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li3 VO4 with low Li-ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N-doped carbon-encapsulated Li3 VO4 nanowires are synthesized through a morphology-inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g-1 at 0.1 A g-1 , excellent rate capability, and long-term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge-transfer, the Li3 VO4 /N-doped carbon nanowires exhibit a high-rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li3 VO4 /N-doped carbon nanowires delivers a high energy density of 136.4 Wh kg-1 at a power density of 532 W kg-1 , revealing the potential for application in high-performance and long life energy storage devices.

3.
Adv Mater ; 29(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859760

RESUMO

A 3D yolk-shell-like electrode material composed of a porous interconnected graphene network and embedded Ni2 P nanoparticles is designed and fabricated by an assembly and self-template strategy. This novel nanoarchitecture integrates the advantages of nanostructure and microstructure, and provides highly efficient and stable electrochemical circuits involving the active nanoparticles, leading to excellent electrochemical performance in terms of reversibility, rate capability, and cycle stability.

4.
Adv Mater ; 28(35): 7774-82, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27358115

RESUMO

A lamellar hybrid assembled from metal disulfide (MoS2 , WS2 ) nanowall arrays anchored on nitrogen-doped carbon layers is developed via an in situ hybridization strategy through a synergistic pyrolysis reaction of thiourea and oxometalates. Such a hybrid provides adequate electrical and chemical coupling between the active materials and the carbon substrate, thus realizing a high-efficiency electron-conduction/ion-transportation system and exhibiting excellent sodium-storage properties.

5.
Adv Mater ; 28(33): 7276-83, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27276583

RESUMO

Peapod-like carbon-encapsulated cobalt chalcogenide nanowires are designed and synthesized by a facile method. The nanowires show excellent electrochemical performance for sodium storage, suggesting that chalcogenides, especially selenides, have potential as advanced anodes for sodium-ion batteries.

6.
Small ; 12(17): 2354-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26938777

RESUMO

Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved.

7.
Adv Mater ; 28(12): 2409-16, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26810919

RESUMO

A 3D tricontinuous Na3 V2 (PO4 )3 :reduced graphene oxide-carbon nanotube cathode is directly deposited on the current collector without any conductive additives or binders by a facile electrostatic spray deposition (ESD) technique. Such an electrode displays excellent rate capability and long cycling stability, which is rather typical of supercapacitors but is connected here with the much higher energy density of an efficient battery electrode.

8.
Small ; 11(45): 6026-35, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26456169

RESUMO

Alloy anodes have shown great potential for next-generation lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, these applications are still limited by inherent huge volume changes and sluggish kinetics. To overcome such limitations, graphene-protected 3D Sb-based anodes grown on conductive substrate are designed and fabricated by a facile electrostatic-assembling and subsequent confinement replacement strategy. As binder-free anodes for LIBs, the obtained electrode exhibits reversible capacities of 442 mAh g(-1) at 100 mA g(-1) and 295 mAh g(-1) at 1000 mA g(-1), and a capacity retention of above 90% (based on the 10th cycle) after 200 cycles at 500 mA g(-1). As for sodium storage properties, the reversible capacities of 517 mAh g(-1) at 50 mA g(-1) and 315 mAh g(-1) at 1000 mA g(-1), the capacity retention of 305 mAh g(-1) after 100 cycles at 300 mA g(-1) are obtained, respectively. Furthermore, the 3D architecture retains good structural integrity after cycling, confirming that the introduction of high-stretchy and robust graphene layers can effectively buffer alloying anodes, and simultaneously provide sustainable contact and protection of the active materials. Such findings show its great potential as superior binder-free anodes for LIBs and SIBs.

9.
Angew Chem Int Ed Engl ; 54(33): 9632-6, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26119499

RESUMO

Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state-of-art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy-intensive. Three-dimensional (3D) porous silicon-based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li-ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 mA h g(-1) is achieved.

10.
ACS Nano ; 9(6): 6610-8, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26053194

RESUMO

Sodium ion batteries attract increasing attention for large-scale energy storage as a promising alternative to the lithium counterparts in view of low cost and abundant sodium source. However, the large ion radius of Na brings about a series of challenging thermodynamic and kinetic difficulties to the electrodes for sodium-storage, including low reversible capacity and low ion transport, as well as large volume change. To mitigate or even overcome the kinetic problems, we develop a self-assembly route to a novel architecture consisting of nanosized porous NASICON-type NaTi2(PO4)3 particles embedded in microsized 3D graphene network. Such architecture synergistically combines the advantages of a 3D graphene network and of 0D porous nanoparticles. It greatly increases the electron/ion transport kinetics and assures the electrode structure integrity, leading to attractive electrochemical performance as reflected by a high rate-capability (112 mAh g(-1) at 1C, 105 mAh g(-1) at 5C, 96 mAh g(-1) at 10C, 67 mAh g(-1) at 50C), a long cycle-life (capacity retention of 80% after 1000 cycles at 10C), and a high initial Coulombic efficiency (>79%). This nanostructure design provides a promising pathway for developing high performance NASICON-type materials for sodium storage.

11.
Adv Sci (Weinh) ; 2(12): 1500200, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-27722078

RESUMO

Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sodium ion batteries. Here, taking SnS as a model material, a novel general strategy is proposed to fabricate a 3D porous interconnected metal sulfide/carbon nanocomposite by the electrostatic spray deposition technique without adding any expensive carbonaceous materials such as graphene or carbon nanotube. In this way, small nanorods of SnS are generated with sizes of ≈10-20 nm embedded in amorphous carbon and self-assembled into a 3D porous interconnected nanocomposite. The SnS:C is directly deposited on the Ti foil as a current collector and neither conductive additives nor binder are needed for battery assembly. Such electrodes exhibit a high reversible capacity, high rate capability, and long cycling stability for both lithium and sodium storage.

12.
Micron ; 48: 54-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23522743

RESUMO

The crystal structure and chemical composition at the inorganic/inorganic and inorganic/organic interfaces in abalone shell (genus Haliotis) were investigated using advanced analytical transmission electron microscopy (TEM) methods. Electron energy-loss near-edge structures (ELNES) of Ca-M2,3, C-K, Ca-L2,3, O-K and low-loss EEL spectra acquired from aragonite and calcite are distinctly different. When comparing biogenic with inorganic material for aragonite, only minor differences in C-K fine structures could be detected. The crystal structure of the mineral bridges was confirmed by ELNES experiments. ELNES and energy-filtered TEM (EFTEM) experiments of regular and self-healed interfaces between nacreous aragonite and prismatic calcite reveal relatively rough transitions. In this work, the importance of TEM specimen preparation and specimen damage on structural features is discussed.


Assuntos
Exoesqueleto/química , Exoesqueleto/ultraestrutura , Cristalização , Gastrópodes/química , Gastrópodes/ultraestrutura , Animais , Microscopia Eletrônica de Transmissão por Filtração de Energia/métodos , Manejo de Espécimes/métodos
13.
Nanotechnology ; 23(4): 045603, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214553

RESUMO

We show that 3 nm wide cobalt-iron alloy nanowires can be synthesized by simple wet chemical electroless deposition inside tubular Tobacco mosaic virus particles. The method is based on adsorption of Pd(II) ions, formation of a Pd catalyst, and autocatalytic deposition of the alloy from dissolved metal salts, reduced by a borane compound. Extensive energy-filtering TEM investigations at the nanoscale revealed that the synthesized wires are alloys of Co, Fe, and Ni. We confirmed by high-resolution TEM that our alloy nanowires are at least partially crystalline, which is compatible with typical Co-rich alloys. Ni traces bestow higher stability, presumably against corrosion, as also known from bulk CoFe. Alloy nanowires, as small as the ones presented here, might be used for a variety of applications including high density data storage, imaging, sensing, and even drug delivery.


Assuntos
Ligas/síntese química , Eletroquímica/métodos , Nanofios/química , Tamanho da Partícula , Vírus do Mosaico do Tabaco/química , Ligas/química , Nanofios/ultraestrutura , Vírus do Mosaico do Tabaco/ultraestrutura , Vírion/ultraestrutura
14.
Nanotechnology ; 20(36): 365302, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19687540

RESUMO

In this paper, we report a novel synthetic approach towards electrically conductive ZnO nanowires close to ambient conditions using lambda-DNA as a template. Initially, the suitability of DNA to assemble ZnO nanocrystals into thin coatings was investigated. The ZnO nanowires formed on stretched and aligned lambda-DNA molecules were prepared via chemical bath deposition (CBD) of zinc acetate in methanol solution in the presence of polyvinylpyrrolidone (PVP). After 10 deposition cycles, the nanowires exceed 10 microm in length and the height can be varied from 12 to around 40 nm. The nanocrystalline structure of the ZnO wires was confirmed by high-resolution transmission electron microscopy (HRTEM). The electrical conductivity was found to be of the order of several Omega cm at room temperature in two terminal measurements.


Assuntos
DNA Viral/química , Nanotecnologia/métodos , Nanofios/química , Óxido de Zinco/química , Bacteriófago lambda/química , Bacteriófago lambda/genética , Eletricidade , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...