Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Radiat Oncol ; 7(4): 100903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282398

RESUMO

Purpose: Selecting patients who will benefit from proton therapy is laborious and subjective. We demonstrate a novel automated solution for creating high-quality knowledge-based plans (KBPs) using proton and photon beams to identify patients for proton treatment based on their normal tissue complication probabilities (NTCP). Methods and Materials: Two previously validated RapidPlan PT models for locally advanced head and neck cancer were used in combination with scripting to automatically create proton and photon KBPs for 72 patients with recent oropharynx cancer. NTCPs were calculated for each patient based on the KBPs, and patient selection was simulated according to the current Dutch national protocol. Results: The photon/proton KBP exhibited good correlation between predicted and achieved organ-at-risk mean doses, with a ≤5 Gy difference in 208/196 out of 215 structures relevant for the head and neck cancer NTCP model. The proton KBPs yielded on average 7.1/6.1/7.6 Gy lower dose to salivary/swallowing structures/oral cavity than the photon KBPs. This reduced average grade 2/3 dysphagia and xerostomia by 7.1/3.3 and 5.5/2.0 percentage points, resulting in 16 of 72 patients (22%) being indicated for proton treatment. The entire automated process took <30 minutes per patient. Conclusions: Automated support for decision making using KBP is feasible and fast. The planning solution has potential to speed up the planning and patient-selection process significantly without major compromises to the plan quality.

2.
Cureus ; 10(12): e3696, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30788187

RESUMO

Purpose Intensity-modulated proton therapy (IMPT) treatments are increasing, however, treatment planning remains complex and prone to variability. RapidPlanTMPT (Varian Medical Systems, Palo Alto, California, USA) is a pre-clinical, proton-specific, automated knowledge-based planning solution which could reduce variability and increase efficiency. It uses a library of previous IMPT treatment plans to generate a model which can predict organ-at-risk (OAR) dose for new patients, and guide IMPT optimization. This study details and evaluates RapidPlanTMPT. Methods IMPT treatment plans for 50 head-and-neck cancer patients populated the model-library. The model was then used to create knowledge-based plans (KBPs) for 10 evaluation-patients. Model quality and accuracy were evaluated using model-provided OAR regression plots and examining the difference between predicted and achieved KBP mean dose. KBP quality was assessed through comparison with respective manual IMPT plans on the basis of boost/elective planning target volume (PTVB/PTVE) homogeneity and OAR sparing. The time to create KBPs was recorded. Results Model quality was good, with an average R2 of 0.85 between dosimetric and geometric features. The model showed high predictive accuracy with differences of <3 Gy between predicted and achieved OAR mean doses for 88/109 OARs. On average, KBPs were comparable to manual IMPT plans with differences of <0.6% in homogeneity. Only 2 of 109 OARs in KBPs had a mean dose >3 Gy more than the manual plan. On average, dose-volume histogram (DVH) predictions required 0.7 minutes while KBP optimization and dose calculation required 4.1 minutes (a 'continue optimization' phase, if required, took an additional 2.8 minutes, on average). Conclusions RapidPlanTMPT demonstrated efficiency and consistency and IMPT KBPs were comparable to manual plans. Because worse OAR sparing in a KBP was not always associated with geometric-outlier warnings, manual plan checks remain important. Such an automated planning solution could also assist in clinical trial quality assurance and overcome the learning curve associated with IMPT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...