Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(13): 7504-7522, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38917322

RESUMO

From transcription to decay, RNA-binding proteins (RBPs) influence RNA metabolism. Using the RBP2GO database that combines proteome-wide RBP screens from 13 species, we investigated the RNA-binding features of 176 896 proteins. By compiling published lists of RNA-binding domains (RBDs) and RNA-related protein family (Rfam) IDs with lists from the InterPro database, we analyzed the distribution of the RBDs and Rfam IDs in RBPs and non-RBPs to select RBDs and Rfam IDs that were enriched in RBPs. We also explored proteins for their content in intrinsically disordered regions (IDRs) and low complexity regions (LCRs). We found a strong positive correlation between IDRs and RBDs and a co-occurrence of specific LCRs. Our bioinformatic analysis indicated that RBDs/Rfam IDs were strong indicators of the RNA-binding potential of proteins and helped predicting new RBP candidates, especially in less investigated species. By further analyzing RBPs without RBD, we predicted new RBDs that were validated by RNA-bound peptides. Finally, we created the RBP2GO composite score by combining the RBP2GO score with new quality factors linked to RBDs and Rfam IDs. Based on the RBP2GO composite score, we compiled a list of 2018 high-confidence human RBPs. The knowledge collected here was integrated into the RBP2GO database at https://RBP2GO-2-Beta.dkfz.de.


Assuntos
Bases de Dados de Proteínas , Domínios Proteicos , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , Humanos , RNA/metabolismo , RNA/química , Sítios de Ligação , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Biologia Computacional/métodos , Ligação Proteica , Animais
2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473821

RESUMO

Mutated genes may lead to cancer development in numerous tissues. While more than 600 cancer-causing genes are known today, some of the most widespread mutations are connected to the RAS gene; RAS mutations are found in approximately 25% of all human tumors. Specifically, KRAS mutations are involved in the three most lethal cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and lung adenocarcinoma. These cancers are among the most difficult to treat, and they are frequently excluded from chemotherapeutic attacks as hopeless cases. The mutated KRAS proteins have specific three-dimensional conformations, which perturb functional interaction with the GAP protein on the GAP-RAS complex surface, leading to a signaling cascade and uncontrolled cell growth. Here, we describe a gluing docking method for finding small molecules that bind to both the GAP and the mutated KRAS molecules. These small molecules glue together the GAP and the mutated KRAS molecules and may serve as new cancer drugs for the most lethal, most difficult-to-treat, carcinomas. As a proof of concept, we identify two new, drug-like small molecules with the new method; these compounds specifically inhibit the growth of the PANC-1 cell line with KRAS mutation G12D in vitro and in vivo. Importantly, the two new compounds show significantly lower IC50 and higher specificity against the G12D KRAS mutant human pancreatic cancer cell line PANC-1, as compared to the recently described selective G12D KRAS inhibitor MRTX-1133.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Desenvolvimento de Medicamentos
3.
Cancer Metastasis Rev ; 39(4): 1091-1105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32715349

RESUMO

As a member of small GTPase family, KRAS protein is a key physiological modulator of various cellular activities including proliferation. However, mutations of KRAS present in numerous cancer types, most frequently in pancreatic (> 60%), colorectal (> 40%), and lung cancers, drive oncogenic processes through overactivation of proliferation. The G12C mutation of KRAS protein is especially abundant in the case of these types of malignancies. Despite its key importance in human disease, KRAS was assumed to be non-druggable for a long time since the protein seemingly lacks potential drug-binding pockets except the nucleotide-binding site, which is difficult to be targeted due to the high affinity of KRAS for both GDP and GTP. Recently, a new approach broke the ice and provided evidence that upon covalent targeting of the G12C mutant KRAS, a highly dynamic pocket was revealed. This novel targeting is especially important since it serves with an inherent solution for drug selectivity. Based on these results, various structure-based drug design projects have been launched to develop selective KRAS mutant inhibitors. In addition to the covalent modification strategy mostly applicable for G12C mutation, different innovative solutions have been suggested for the other frequently occurring oncogenic G12 mutants. Here we summarize the latest advances of this field, provide perspectives for novel approaches, and highlight the special properties of KRAS, which might issue some new challenges.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Modelos Moleculares , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Relação Estrutura-Atividade
4.
Magy Onkol ; 63(4): 310-323, 2019 12 09.
Artigo em Húngaro | MEDLINE | ID: mdl-31821386

RESUMO

The RASopathy consortium was built from research groups of the Budapest University of Technology and Economics, Eötvös Loránd University, Semmelweis University and two startups: KINETO Lab Ltd. and Fototronic Ltd. The goal was to design and test novel covalent and allele-specific KRAS small molecular inhibitors. KRAS is the most frequently mutated human oncogene which was unsuccessfully targeted until recently. The consortium established G12C-expressing bacterial and human cancer cell models (homo- and heterozygous variants) of lung, colorectal and pancreatic tumors. Using covalent fragment and acrylamide warhead libraries we were able to select novel candidates of small molecular G12C-specific inhibitors which were compared to published best-in-class drug candidates.


Assuntos
Neoplasias , Alelos , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...