Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 56(3): 469-481, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28812203

RESUMO

Intraventricular pressure differences (IVPDs) govern left ventricular (LV) efficient filling and are a significant determinant of LV diastolic function. Our primary aim is to assess the performance of available methods (color M-mode (CMM) and 1D/2D MRI-based methods) to determine IVPDs from intracardiac flow measurements. Performance of three methods to calculate IVPDs was first investigated via an LV computational fluid dynamics (CFD) model. CFD velocity data were derived along a modifiable scan line, mimicking ultrasound/MRI acquisition of 1D (IVPDCMM/IVPD1D MRI) and 2D (IVPD2D MRI) velocity-based IVPD information. CFD pressure data (IVPDCFD) was used as a ground truth. Methods were also compared in a small cohort (n = 13) of patients with heart failure with preserved ejection fraction (HFpEF). In silico data showed a better performance of the IVPD2D MRI approach: RMSE values for a well-aligned scan line were 0.2550 mmHg (IVPD1D MRI), 0.0798 mmHg (IVPD2D MRI), and 0.2633 mmHg (IVPDCMM). In vivo data exhibited moderate correlation between techniques. Considerable differences found may be attributable to different timing of measurements and/or integration path. CFD modeling demonstrated an advantage using 2D velocity information to compute IVPDs, and therefore, a 2D MRI-based method should be favored. However, further studies are needed to support the clinical significance of MRI-based computation of IVPDs over CMM.


Assuntos
Simulação por Computador , Modelos Cardiovasculares , Pressão Ventricular/fisiologia , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Humanos , Hidrodinâmica , Imageamento por Ressonância Magnética , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...