Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Npj Spintron ; 2(1): 29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966324

RESUMO

Quantum magnonics investigates the quantum-mechanical properties of magnons, such as quantum coherence or entanglement for solid-state quantum information technologies at the nanoscale. The most promising material for quantum magnonics is the ferrimagnetic yttrium iron garnet (YIG), which hosts magnons with the longest lifetimes. YIG films of the highest quality are grown on a paramagnetic gadolinium gallium garnet (GGG) substrate. The literature has reported that ferromagnetic resonance (FMR) frequencies of YIG/GGG decrease at temperatures below 50 K despite the increase in YIG magnetization. We investigated a 97 nm-thick YIG film grown on 500 µm-thick GGG substrate through a series of experiments conducted at temperatures as low as 30 mK, and using both analytical and numerical methods. Our findings suggest that the primary factor contributing to the FMR frequency shift is the stray magnetic field created by the partially magnetized GGG substrate. This stray field is antiparallel to the applied external field and is highly inhomogeneous, reaching up to 40 mT in the center of the sample. At temperatures below 500 mK, the GGG field exhibits a saturation that cannot be described by the standard Brillouin function for a paramagnet. Including the calculated GGG field in the analysis of the FMR frequency versus temperature dependence allowed the determination of the cubic and uniaxial anisotropies. We find that the total crystallographic anisotropy increases more than three times with the decrease in temperature down to 2 K. Our findings enable accurate predictions of the YIG/GGG magnetic systems behavior at low and ultralow millikelvin temperatures, crucial for developing quantum magnonic devices.

2.
Sci Rep ; 14(1): 12199, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806550

RESUMO

The magnetization value and electric resistivity of the single-crystalline sample of Ni50Fe19Co4Ga27 shape memory alloy were measured. The elastic modulus was determined by the Dynamic Mechanical Analysis (DMA). The characteristic temperatures of martensitic transformation (MT) of the alloy were estimated from the temperature dependences of magnetization, electric resistivity and elastic modulus. A significant disparity between MT temperatures resulting from DMA and those estimated from magnetic and resistivity measurements was discovered. It was argued that the discrepancy is caused by the non-uniform mechanical stressing of twinned single crystal by the DMA analyzer. Moreover, the DMA measurements revealed a significant decrease of the elastic modulus of twinned martensite under the applied magnetic field of 1.5 kOe. To explain this effect, the temperature-dependent Young's modulus of twinned crystal lattice was computed. The computations showed that the experimentally observed field-induced change of the elastic modulus is caused by the stress-assisted detwinning of the crystal lattice by the applied magnetic field.

3.
Nat Phys ; 20(4): 615-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638455

RESUMO

Magnetic skyrmions are localized, stable topological magnetic textures that can move and interact with each other like ordinary particles when an external stimulus is applied. The efficient control of the motion of spin textures using spin-polarized currents opened an opportunity for skyrmionic devices such as racetrack memory and neuromorphic or reservoir computing. The coexistence of skyrmions with high topological charge in the same system promises further possibilities for efficient technological applications. In this work, we directly observe dipolar skyrmions and antiskyrmions with arbitrary topological charge in Co/Ni multilayers at room temperature. We explore the dipolar-stabilized spin objects with topological charges of up to 10 and characterize their nucleation process, their energy dependence on the topological charge and the effect of the material parameters on their stability. Furthermore, our micromagnetic simulations demonstrate spin-transfer-induced motion of these spin objects, which is important for their potential device application.

4.
Sci Rep ; 13(1): 12054, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491598

RESUMO

magnum.np is a micromagnetic finite-difference library completely based on the tensor library PyTorch. The use of such a high level library leads to a highly maintainable and extensible code base which is the ideal candidate for the investigation of novel algorithms and modeling approaches. On the other hand magnum.np benefits from the device abstraction and optimizations of PyTorch enabling the efficient execution of micromagnetic simulations on a number of computational platforms including graphics processing units and potentially Tensor processing unit systems. We demonstrate a competitive performance to state-of-the-art micromagnetic codes such as mumax3 and show how our code enables the rapid implementation of new functionality. Furthermore, handling inverse problems becomes possible by using PyTorch's autograd feature.

5.
Nat Commun ; 12(1): 2611, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972515

RESUMO

Skyrmions and antiskyrmions are topologically protected spin structures with opposite vorticities. Particularly in coexisting phases, these two types of magnetic quasi-particles may show fascinating physics and potential for spintronic devices. While skyrmions are observed in a wide range of materials, until now antiskyrmions were exclusive to materials with D2d symmetry. In this work, we show first and second-order antiskyrmions stabilized by magnetic dipole-dipole interaction in Fe/Gd-based multilayers. We modify the magnetic properties of the multilayers by Ir insertion layers. Using Lorentz transmission electron microscopy imaging, we observe coexisting antiskyrmions, Bloch skyrmions, and type-2 bubbles and determine the range of material properties and magnetic fields where the different spin objects form and dissipate. We perform micromagnetic simulations to obtain more insight into the studied system and conclude that the reduction of saturation magnetization and uniaxial magnetic anisotropy leads to the existence of this zoo of different spin objects and that they are primarily stabilized by dipolar interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...