Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403530, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975809

RESUMO

High Li-storage-capacity particles such as alloying-based anodes (Si, Sn, Ge, etc.) are core components for next-generation Li-ion batteries (LIBs) but are crippled by their intrinsic volume expansion issues. While pore pre-plantation represents a mainstream solution, seldom do this strategy fully satisfy the requirements in practical LIBs. One prominent issue is that porous particles reduce electrode density and negate volumetric performance (Wh L-1) despite aggressive electrode densification strategies. Moreover, the additional liquid electrolyte dosage resulting from porosity increase is rarely noticed, which has a significant negative impact on cell gravimetric energy density (Wh kg-1). Here, the concept of judicious porosity control is introduced to recalibrate existing particle design principles in order to concurrently boost gravimetric and volumetric performance, while also maintaining the battery's cycle life. The critical is emphasized but often neglected role that intraparticle pores play in dictating battery performance, and also highlight the superiority of closed pores over the open pores that are more commonly referred to in the literature. While the analysis and case studies focus on silicon-carbon composites, the overall conclusions apply to the broad class of alloying anode chemistries.

2.
Small ; : e2402126, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573960

RESUMO

The instability of Nickel (Ni)-rich cathodes at high voltage is a critical bottleneck toward developing superior lithium-ion batteries. This instability is driven by cathode-electrolyte side reactions, causing rapid degradation, and compromising the overall cycle life. In this study, a protective coating using dispersed "magnetite (FeO.Fe2O3)" nanoparticles is used to uniformly decorate the surface of LiNi0.8Co0.1Mn0.1O2 (NMC 811) microparticles. The modified cathode delivers significant improvement in electrochemical performance at high voltage (≈4.6 V) by suppressing deleterious electrode-electrolyte interactions. A notably higher cycle stability, rate performance, and overall energy density is realized for the coated cathode in a conventional liquid electrolyte battery. When deployed in pellet-stacked solid-state cells with Li6PS5Cl as the electrolyte, the magnetite-coated NMC 811 showed strikingly superior cycling stability than its uncoated counterpart, proving the versatility of the chemistry. The facile surfactant-assisted coating process developed in this work, in conjunction with the affordability, abundance, and nontoxic nature of magnetite makes this a promising approach to realize commercially viable high voltage Ni-rich cathodes that exhibit stable performance in liquid as well as solid-state lithium-ion batteries.

3.
ACS Sens ; 9(1): 81-91, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113168

RESUMO

In agriculture, pest management is a major challenge. Crop releases volatiles in response to the pest; hence, sensing these volatile signals at a very early stage will ease pest management. Here, binary catalyst-loaded SnO2 nanoparticles of <5 nm were synthesized for the repeated capture and oxidation of the signature volatile and its products to amplify the chemoresistive signal to detect concentrations as low as ≈120 ppb. The sensitivity may be due to the presence of the elements in the Sn-Fe-Pt bond evidenced by extended X-ray absorption fine-structure spectroscopy (EXAFS) that captures and oxidize the volatile without escaping. This strong catalyst may oxidize nontarget volatiles and can cause false signals; hence, a molecular sieve filter has been coupled to ensure high selectivity for the detection ofTuta absolutainfestation in tomato. Finally, with the support of a mobile power bank, the optimized sensor has been assembled into a lightweight handheld device.


Assuntos
Nanopartículas , Oxirredução , Agricultura , Estresse Oxidativo
4.
Small ; : e2306388, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088532

RESUMO

Alloy-based anodes are regarded as safer and higher capacity alternatives to lithium metal and commercial graphite anodes respectively. However, their commercialization is hindered by poor stability and irreversible loss of active material during cycling. Combining non-flammable and electrochemically stable solid-state electrolytes with high-capacity alloy anodes has chemo-mechanical benefits that can address these long-standing issues. The distinctive interfacial characteristics of solid-state electrolytes reduce the impact of volume variation and dynamic reconstruction of the solid-electrolyte-interphase, thereby realizing the best of both worlds. In this perspective, the interfacial underpinnings for alloy anode based solid-state batteries that are crucial for their success are discussed. The goal is to update the audience with key recent findings that can lay the foundation for future research work in this area. The relevant steps toward commercialization of alloy anode based solid-state batteries are also discussed, starting from bulk and interface architectures to electrode composite preparation and final cell assembly.

5.
Adv Mater ; 35(35): e2302625, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327064

RESUMO

Bifunctional catalysts can facilitate two different electrochemical reactions with conflicting characteristics. Here, a highly reversible bifunctional electrocatalyst for rechargeable zinc-air batteries (ZABs) is reported featuring a "core-shell structure" in which N-doped graphene sheets wrap around vanadium molybdenum oxynitride nanoparticles. Single Mo atoms are released from the particle core during synthesis and anchored to electronegative N-dopant species in the graphitic shell. The resultant Mo single-atom catalysts excel as active oxygen evolution reaction (OER) sites in pyrrolic-N and as active oxygen reduction reaction (ORR) sites in pyridinic-N environments. ZABs with such bifunctional and multicomponent single-atom catalysts deliver high power density (≈376.4 mW cm-2 ) and long cycle life of over 630 h, outperforming noble-metal-based benchmarks. Flexible ZABs that can tolerate a wide range of temperatures (-20 to 80 °C) under severe mechanical deformation are also demonstrated.

6.
Small ; 19(30): e2301847, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37170694

RESUMO

An electronically conjugated functional triazine framework is used to synthesize a physicochemically interlocked sulfur cathode that delivers high energy density coupled with exceptional cycle life in lithium-sulfur batteries. Conventional melt-diffusion strategies to impregnate sulfur in the cathode offer poor cycle life due to physical mixing with weak interactions. By contrast, in this approach, sulfur is physicochemically entrapped within a nanoporous and heteroatom doped high surface area covalent triazine framework, resulting in outstanding electrochemical performance (≈89% capacity retention after 1000 cycles, the energy density of ≈2,022 Wh kg-1 sulfur and high-rate capability up to 12 C). The overall structural characteristics and interactions of sulfur with the covalent triazine framework are explored in detail to explain the intriguing properties of the sulfur cathode.

7.
ACS Appl Mater Interfaces ; 15(15): 18962-18972, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014669

RESUMO

The non-toxic and stable chalcogenide perovskite BaZrS3 fulfills many key optoelectronic properties for a high-efficiency photovoltaic material. It has been shown to possess a direct band gap with a large absorption coefficient and good carrier mobility values. With a reported band gap of 1.7-1.8 eV, BaZrS3 is a good candidate for tandem solar cell materials; however, its band gap is significantly larger than the optimal value for a high-efficiency single-junction solar cell (∼1.3 eV, Shockley-Queisser limit)─thus doping is required to lower the band gap. By combining first-principles calculations and machine learning algorithms, we are able to identify and predict the best dopants for the BaZrS3 perovskites for potential future photovoltaic devices with a band gap within the Shockley-Queisser limit. It is found that the Ca dopant at the Ba site or Ti dopant at the Zr site is the best candidate dopant. Based on this information, we report for the first time partial doping at the Ba site in BaZrS3 with Ca (i.e., Ba1-xCaxZrS3) and compare its photoluminescence with Ti-doped perovskites [i.e., Ba(Zr1-xTix)S3]. Synthesized (Ba,Ca)ZrS3 perovskites show a reduction in the band gap from ∼1.75 to ∼1.26 eV with <2 atom % Ca doping. Our results indicate that for the purpose of band gap tuning for photovoltaic applications, Ca-doping at the Ba-site is superior to Ti-doping at the Zr-site reported previously.

8.
Nature ; 607(7919): 480-485, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859196

RESUMO

Pyroelectricity describes the generation of electricity by temporal temperature change in polar materials1-3. When free-standing pyroelectric materials approach the 2D crystalline limit, how pyroelectricity behaves remained largely unknown. Here, using three model pyroelectric materials whose bonding characters along the out-of-plane direction vary from van der Waals (In2Se3), quasi-van der Waals (CsBiNb2O7) to ionic/covalent (ZnO), we experimentally show the dimensionality effect on pyroelectricity and the relation between lattice dynamics and pyroelectricity. We find that, for all three materials, when the thickness of free-standing sheets becomes small, their pyroelectric coefficients increase rapidly. We show that the material with chemical bonds along the out-of-plane direction exhibits the greatest dimensionality effect. Experimental observations evidence the possible influence of changed phonon dynamics in crystals with reduced thickness on their pyroelectricity. Our findings should stimulate fundamental study on pyroelectricity in ultra-thin materials and inspire technological development for potential pyroelectric applications in thermal imaging and energy harvesting.

9.
Proc Natl Acad Sci U S A ; 119(30): e2205762119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862458

RESUMO

Looming concerns regarding scarcity, high prices, and safety threaten the long-term use of lithium in energy storage devices. Calcium has been explored in batteries because of its abundance and low cost, but the larger size and higher charge density of calcium ions relative to lithium impairs diffusion kinetics and cyclic stability. In this work, an aqueous calcium-ion battery is demonstrated using orthorhombic, trigonal, and tetragonal polymorphs of molybdenum vanadium oxide (MoVO) as a host for calcium ions. Orthorhombic and trigonal MoVOs outperform the tetragonal structure because large hexagonal and heptagonal tunnels are ubiquitous in such crystals, providing facile pathways for calcium-ion diffusion. For trigonal MoVO, a specific capacity of ∼203 mAh g-1 was obtained at 0.2C and at a 100 times faster rate of 20C, an ∼60 mAh g-1 capacity was achieved. The open-tunnel trigonal and orthorhombic polymorphs also promoted cyclic stability and reversibility. A review of the literature indicates that MoVO provides one of the best performances reported to date for the storage of calcium ions.

10.
ACS Omega ; 7(14): 11777-11787, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449907

RESUMO

Operating microbial fuel cells (MFCs) under extreme pH conditions offers a substantial benefit. Acidic conditions suppress the growth of undesirable methanogens and increase redox potential for oxygen reduction reactions (ORRs), and alkaline conditions increase the electrocatalytic activity. However, operating any fuel cells, including MFCs, is difficult under such extreme pH conditions. Here, we demonstrate a pH-universal ORR ink based on hollow nanospheres of manganese oxide (h-Mn3O4) anchored with multiwalled carbon nanotubes (MWCNTs) on planar and porous forms of carbon electrodes in MFCs (pH = 3-11). Nanospheres of h-Mn3O4 (diameter ∼ 31 nm, shell thickness ∼ 7 nm) on a glassy carbon electrode yielded a highly reproducible ORR activity at pH 3 and 10, based on rotating disk electrode (RDE) tests. A phenomenal ORR performance and long-term stability (∼106 days) of the ink were also observed with four different porous cathodes (carbon cloth, carbon nanofoam paper, reticulated vitreous carbon, and graphite felt) in MFCs. The ink reduced the charge transfer resistance (R ct) to the ORR by 100-fold and 45-fold under the alkaline and acidic conditions, respectively. The current study promotes ORR activity and subsequently the MFC operations under a wide range of pH conditions, including acidic and basic conditions.

11.
Adv Mater ; 33(51): e2104467, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34651334

RESUMO

Despite decades of research, metallic corrosion remains a long-standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here a lightweight sulfur-selenium (S-Se) alloy is designed with high stiffness and ductility that can serve as an excellent corrosion-resistant coating with protection efficiency of ≈99.9% for steel in a wide range of diverse environments. S-Se coated mild steel shows a corrosion rate that is 6-7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate-reducing bacterial medium) environments. The coating is strongly adhesive, mechanically robust, and demonstrates excellent damage/deformation recovery properties, which provide the added advantage of significantly reducing the probability of a defect being generated and sustained in the coating, thus improving its longevity. The high corrosion resistance of the alloy is attributed in diverse environments to its semicrystalline, nonporous, antimicrobial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.

12.
Sci Rep ; 11(1): 17672, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480076

RESUMO

Swift heavy ions (SHI) irradiation of Nickel (Ni) beam with different ions fluence bring the modifications in the functional properties of radio frequency (RF) grown zirconium oxide (ZrO2) nanocrystalline thin films. X-ray diffraction analysis affirms the monoclinic to tetragonal phase transformation and diminishing of peak at higher fluence 1 × 1014 and 2 × 1014 ions/cm2 induced by electronic excitation caused by SHI. Zirconium oxide thin films exhibit the same thickness (195 nm) of virgin and irradiated samples and whereas the nanocrystalline thin films have the elemental composition in proper stoichiometry (1:2) as analyzed by rutherford backscattering spectroscopy (RBS). Photoluminescence measurements confirm the blue emission of virgin and irradiated sample recorded at excitation wavelength 270 to 310 nm. The intensity of obtained emission bands varies with fluence which is interpreted in terms of generation and annihilation of defect centers. The characteristic Ag and Bg Raman modes of monoclinic and tetragonal ZrO2 are obtained at different positions. Moreover, the nanocrystalline ZrO2 thin films exhibits the most prominent absorption phenomenon in the visible range and the irradiation cause significant decrease in band gap to 3.69 eV compare to the virgin ZrO2 sample (3.86 eV). XPS analysis indicates the shifting of the core levels Zr 3d and O 1s towards higher binding energy and spin-orbit splitting of different states. The findings in this research justify that the irradiated thin films can be a potential candidate for designing of new materials, intense radiation environments, nuclear reactors, nuclear waste systems, clean energy sources.

13.
ACS Appl Mater Interfaces ; 13(27): 32450-32460, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34196518

RESUMO

Lead iodide (PbI2) as a layered material has emerged as an excellent candidate for optoelectronics in the visible and ultraviolet regime. Micrometer-sized flakes synthesized by mechanical exfoliation from bulk crystals or by physical vapor deposition have shown a plethora of applications from low-threshold lasing at room temperature to high-performance photodetectors with large responsivity and faster response. However, large-area centimeter-sized growth of epitaxial thin films of PbI2 with well-controlled orientation has been challenging. Additionally, the nature of grain boundaries in epitaxial thin films of PbI2 remains elusive. Here, we use mica as a model substrate to unravel the growth mechanism of large-area epitaxial PbI2 thin films. The partial growth leading to uncoalesced domains reveals the existence of inversion domain boundaries in epitaxial PbI2 thin films on mica. Combining the experimental results with first-principles calculations, we also develop an understanding of the thermodynamic and kinetic factors that govern the growth mechanism, which paves the way for the synthesis of high-quality large-area PbI2 on other substrates and heterostructures of PbI2 on single-crystalline graphene. The ability to reproducibly synthesize high-quality large-area thin films with precise control over orientation and tunable optical properties could open up unique and hitherto unavailable opportunities for the use of PbI2 and its heterostructures in optoelectronics, twistronics, substrate engineering, and strain engineering.

14.
Biosens Bioelectron ; 182: 113163, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33826991

RESUMO

The rapid, sensitive, and selective detection of target analytes using electrochemical sensors is challenging. ESSENCE, a new Electrochemical Sensor that uses a Shear-Enhanced, flow-through Nanoporous Capacitive Electrode, overcomes current electrochemical sensors' response limitations, selectivity, and sensitivity limitations. ESSENCE is a microfluidic channel packed with transducer material sandwiched by a top and bottom microelectrode. The room-temperature instrument less integration process allows the switch of the transducer materials to make up the porous electrode without modifying the electrode architecture or device protocol. ESSENCE can be used to detect both biomolecules and small molecules by simply changing the packed transducer material. Electron microscopy results confirm the high porosity. In conjunction with the non-planar interdigitated electrode, the packed transducer material results in a flow-through porous electrode. Electron microscopy results confirm the high porosity. The enhanced shear forces and increased convective fluxes disrupt the electric double layer's (EDL) diffusive process in ESSENCE. This disruption migrates the EDL to high MHz frequency allowing the capture signal to be measured at around 100 kHz, significantly improving device timing (rapid detection) with a low signal-to-noise ratio. The device's unique architecture allows us multiple configuration modes for measuring the impedance signal. This allows us to use highly conductive materials like carbon nanotubes. We show that by combining single-walled carbon nanotubes as transducer material with appropriate capture probes, NP-µIDE has high selectivity and sensitivity for DNA (fM sensitivity, selective against non-target DNA), breast cancer biomarker proteins (p53, pg/L sensitivity, selective against non-target HER2).


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanotubos de Carbono , Biomarcadores Tumorais , DNA , Técnicas Eletroquímicas , Eletrodos , Humanos
15.
Nanoscale ; 12(40): 20868-20874, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33043946

RESUMO

Herein, we report vanadium carbide (V8C7) nanowires (NWs) axially grown on carbon cloths (CCs) as a dual-ion accepting cathode for both lithium (LIBs) and sodium-ion batteries (SIBs). Using a facile hydrothermal method, we grew V2O3 NWs on CCs and subsequently reduced them to V8C7 by annealing with carbon sources under a H2/Ar atmosphere. In striking contrast to V2O5 NW cathodes obtained by annealing under air, the V8C7 NWs exhibit outstanding cycling stability during 500 cycles, and good rate capability for both LIBs and SIBs. V8C7 NWs as cathode active materials for LIBs exhibited 203.9 mA h g-1 specific capacity at 0.1 C after 500 cycles, 91.12% cycling retention and a coulombic efficiency of 99.84%. As cathodes in SIBs, the V8C7 NWs delivered 176.34 mA h g-1 specific capacity at 0.1 C during 300 cycles. Their defect sites by removal of the oxygen framework in V2O3 NWs have a high surface area (183.27 m2 g-1) and the unique 1D NW structure highly mitigates the volume changes during charge and discharge showing a superior electrochemical performance. Compared to commercially available cathodes, V8C7 nanowires have very good cycling stability and enhanced electrical conductivity. Moreover, the synergistic effect with 3D CCs utilized here as a current collector provides a large number of cation-accessible active sites in conjunction with high electrical conductivity and chemical stability.

16.
Adv Mater ; 32(26): e1908291, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32363647

RESUMO

Hunger and chronic undernourishment impact over 800 million people, which translates to ≈10.7% of the world's population. While countries are increasingly making efforts to reduce poverty and hunger by pursuing sustainable energy and agricultural practices, a third of the food produced around the globe still is wasted and never consumed. Reducing food shortages is vital in this effort and is often addressed by the development of genetically modified produce or chemical additives and inedible coatings, which create additional health and environmental concerns. Herein, a multifunctional bio-nanocomposite comprised largely of egg-derived polymers and cellulose nanomaterials as a conformal coating onto fresh produce that slows down food decay by retarding ripening, dehydration, and microbial invasion is reported. The coating is edible, washable, and made from readily available inexpensive or waste materials, which makes it a promising economic alternative to commercially available fruit coatings and a solution to combat food wastage that is rampant in the world.


Assuntos
Filmes Comestíveis , Armazenamento de Alimentos/métodos , Frutas/química , Nanocompostos/química , Celulose/química , Curcumina/química , Clara de Ovo/química , Gema de Ovo/química , Tensão Superficial , Viscosidade
17.
ACS Nano ; 14(5): 6258-6268, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32330006

RESUMO

Hotspot engineering has the potential to transform the field of surface-enhanced Raman spectroscopy (SERS) by enabling ultrasensitive and reproducible detection of analytes. However, the ability to controllably generate SERS hotspots, with desired location and geometry, over large-area substrates, has remained elusive. In this study, we sculpt artificial edges in monolayer molybdenum disulfide (MoS2) by low-power focused laser-cutting. We find that when gold nanoparticles (AuNPs) are deposited on MoS2 by drop-casting, the AuNPs tend to accumulate predominantly along the artificial edges. First-principles density functional theory (DFT) calculations indicate strong binding of AuNPs with the artificial edges due to dangling bonds that are ubiquitous on the unpassivated (laser-cut) edges. The dense accumulation of AuNPs along the artificial edges intensifies plasmonic effects in these regions, creating hotspots exclusively along the artificial edges. DFT further indicates that adsorption of AuNPs along the artificial edges prompts a transition from semiconducting to metallic behavior, which can further intensify the plasmonic effect along the artificial edges. These effects are observed exclusively for the sculpted (i.e., cut) edges and not observed for the MoS2 surface (away from the cut edges) or along the natural (passivated) edges of the MoS2 sheet. To demonstrate the practical utility of this concept, we use our substrate to detect Rhodamine B (RhB) with a large SERS enhancement (∼104) at the hotspots for RhB concentrations as low as ∼10-10 M. The single-step laser-etching process reported here can be used to controllably generate arrays of SERS hotspots. As such, this concept offers several advantages over previously reported SERS substrates that rely on electrochemical deposition, e-beam lithography, nanoimprinting, or photolithography. Whereas we have focused our study on MoS2, this concept could, in principle, be extended to a variety of 2D material platforms.

18.
ACS Appl Mater Interfaces ; 12(17): 19572-19580, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32270997

RESUMO

Exploring efficient electrocatalysts for lithium-sulfur (Li-S) batteries is of great significance for the sulfur/polysulfide/sulfide multiphase conversion. Herein, we report nickel-iron intermetallic (Ni3Fe) as a novel electrocatalyst to trigger the highly efficient polysulfide-involving surface reactions. The incorporation of iron into the cubic nickel phase can induce strong electronic interaction and lattice distortion, thereby activating the inferior Ni phase to catalytically active Ni3Fe phase. Kinetics investigations reveal that the Ni3Fe phase promotes the redox kinetics of the multiphase conversion of Li-S electrochemistry. As a result, the Li-S cells assembled with a 70 wt % sulfur cathode and a Ni3Fe-modified separator deliver initial capacities of 1310.3 mA h g-1 at 0.1 C and 598 mA h g-1 at 4 C with excellent rate capability and a long cycle life of 1000 cycles at 1 C with a low capacity fading rate of ∼0.034 per cycle. More impressively, the Ni3Fe-catalyzed cells exhibit outstanding performance even at harsh working conditions, such as high sulfur loading (7.7 mg cm-2) or lean electrolyte/sulfur ratio (∼6 µL mg-1). This work provides a new concept on exploring advanced intermetallic catalysts for high-rate and long-life Li-S batteries.

19.
Proc Natl Acad Sci U S A ; 117(11): 5588-5594, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123085

RESUMO

The use of potassium (K) metal anodes could result in high-performance K-ion batteries that offer a sustainable and low-cost alternative to lithium (Li)-ion technology. However, formation of dendrites on such K-metal surfaces is inevitable, which prevents their utilization. Here, we report that K dendrites can be healed in situ in a K-metal battery. The healing is triggered by current-controlled, self-heating at the electrolyte/dendrite interface, which causes migration of surface atoms away from the dendrite tips, thereby smoothening the dendritic surface. We discover that this process is strikingly more efficient for K as compared to Li metal. We show that the reason for this is the far greater mobility of surface atoms in K relative to Li metal, which enables dendrite healing to take place at an order-of-magnitude lower current density. We demonstrate that the K-metal anode can be coupled with a potassium cobalt oxide cathode to achieve dendrite healing in a practical full-cell device.

20.
ACS Appl Mater Interfaces ; 12(11): 13229-13238, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32083835

RESUMO

Solar-driven water evaporation has been proposed as a renewable and sustainable strategy for the generation of clean water from seawater or wastewater. To enable such technologies, development of photothermal materials that enable efficient solar steam generation is essential. The current challenge is to manufacture such photothermal materials cost-effectively and at scale. Furthermore, the photothermal materials should be strongly hydrophilic and environmentally stable. Herein, we demonstrate facile and scalable fabrication of carbon nanotube (CNT)-based photothermal nanocomposite foam by igniting an ethanol solution of ferric acetylacetonate [Fe(acac)3] absorbed within nickel (Ni) foam under ambient conditions. The Fe(acac)3 precursor provides carbon and the zero-valent iron catalyst for growing CNTs on the Ni foam, while ethanol facilitates the dispersion of Fe(acac)3 on the Ni foam and supplies heat energy for the growth of CNTs by its burning. A forest of dense and uniform CNTs decorated with Fe2O3 nanoparticles is generated within seconds. The resultant Fe2O3/CNT/Ni nanocomposite foam exhibits "superhydrophilicity" and high light absorption capacity, ensuring rapid transport and fast evaporation of water within the entire foam. Efficient light-to-heat conversion causes the surface temperature of the foam to reach ∼83.1 °C under 1 sun irradiation. The average water evaporation rates of such foam are as high as ∼1.48 and ∼4.27 kg m-2 h-1 with light-to-heat conversion efficiencies of ∼81.3 and ∼93.8% under 1 sun and 3 sun irradiation, respectively. Moreover, the versatile and scalable combustion synthesis strategy presented here can be realized on various substrates, exhibiting high adaptability for different applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...