Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1388496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873613

RESUMO

The intricate immune mechanisms governing mucosal healing following intestinal damage induced by cytotoxic drugs remain poorly understood. The goal of this study was to investigate the role of lymphotoxin beta receptor (LTßR) signaling in chemotherapy-induced intestinal damage. LTßR deficient mice exhibited heightened body weight loss, exacerbated intestinal pathology, increased proinflammatory cytokine expression, reduced IL-22 expression, and proliferation of intestinal epithelial cells following methotrexate (MTX) treatment. Furthermore, LTßR-/-IL-22-/- mice succumbed to MTX treatment, suggesting that LTßR- and IL-22- dependent pathways jointly promote mucosal repair. Although both LTßR ligands LIGHT and LTß were upregulated in the intestine early after MTX treatment, LIGHT-/- mice, but not LTß-/- mice, displayed exacerbated disease. Further, we revealed the critical role of T cells in mucosal repair as T cell-deficient mice failed to upregulate intestinal LIGHT expression and exhibited increased body weight loss and intestinal pathology. Analysis of mice with conditional inactivation of LTßR revealed that LTßR signaling in intestinal epithelial cells, but not in Lgr5+ intestinal stem cells, macrophages or dendritic cells was critical for mucosal repair. Furthermore, inactivation of the non-canonical NF-kB pathway member RelB in intestinal epithelial cells promoted MTX-induced disease. Based on these results, we propose a model wherein LIGHT produced by T cells activates LTßR-RelB signaling in intestinal epithelial cells to facilitate mucosal repair following chemotherapy treatment.


Assuntos
Mucosa Intestinal , Receptor beta de Linfotoxina , Metotrexato , Camundongos Knockout , Transdução de Sinais , Fator de Transcrição RelB , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos dos fármacos , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/genética , Camundongos , Fator de Transcrição RelB/metabolismo , Fator de Transcrição RelB/genética , Metotrexato/efeitos adversos , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Interleucina 22 , Interleucinas/metabolismo , Interleucinas/genética
2.
Front Immunol ; 14: 1146077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969171

RESUMO

Innate lymphoid cells (ILCs) are heterogeneous innate immune cells which participate in host defense, mucosal repair and immunopathology by producing effector cytokines similarly to their adaptive immune cell counterparts. The development of ILC1, 2, and 3 subsets is controlled by core transcription factors: T-bet, GATA3, and RORγt, respectively. ILCs can undergo plasticity and transdifferentiate to other ILC subsets in response to invading pathogens and changes in local tissue environment. Accumulating evidence suggests that the plasticity and the maintenance of ILC identity is controlled by a balance between these and additional transcription factors such as STATs, Batf, Ikaros, Runx3, c-Maf, Bcl11b, and Zbtb46, activated in response to lineage-guiding cytokines. However, how interplay between these transcription factors leads to ILC plasticity and the maintenance of ILC identity remains hypothetical. In this review, we discuss recent advances in understanding transcriptional regulation of ILCs in homeostatic and inflammatory conditions.


Assuntos
Imunidade Inata , Linfócitos , Diferenciação Celular , Fatores de Transcrição , Citocinas
3.
Microorganisms ; 11(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36838426

RESUMO

Mucosal tissue homeostasis is a dynamic process that involves multiple mechanisms including regulation of innate lymphoid cells (ILCs). ILCs are mostly tissue-resident cells which are critical for tissue homeostasis and immune response against pathogens. ILCs can sense environmental changes and rapidly respond by producing effector cytokines to limit pathogen spread and initiate tissue recovery. However, dysregulation of ILCs can also lead to immunopathology. Accumulating evidence suggests that ILCs are dynamic population that can change their phenotype and functions under rapidly changing tissue microenvironment. However, the significance of ILC plasticity in response to pathogens remains poorly understood. Therefore, in this review, we discuss recent advances in understanding the mechanisms regulating ILC plasticity in response to intestinal, respiratory and genital tract pathogens. Key transcription factors and lineage-guiding cytokines regulate this plasticity. Additionally, we discuss the emerging data on the role of tissue microenvironment, gut microbiota, and hypoxia in ILC plasticity in response to mucosal pathogens. The identification of new pathways and molecular mechanisms that control functions and plasticity of ILCs could uncover more specific and effective therapeutic targets for infectious and autoimmune diseases where ILCs become dysregulated.

4.
Polymers (Basel) ; 16(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201707

RESUMO

This study is focused on exploring the feasibility of simultaneously producing the two products, cellulose nitrates (CNs) and bacterial cellulose (BC), from Miscanthus × giganteus. The starting cellulose for them was isolated by successive treatments of the feedstock with HNO3 and NaOH solutions. The cellulose was subjected to enzymatic hydrolysis for 2, 8, and 24 h. The cellulose samples after the hydrolysis were distinct in structure from the starting sample (degree of polymerization (DP) 1770, degree of crystallinity (DC) 64%) and between each other (DP 1510-1760, DC 72-75%). The nitration showed that these samples and the starting cellulose could successfully be nitrated to furnish acetone-soluble CNs. Extending the hydrolysis time from 2 h to 24 h led to an enhanced yield of CNs from 116 to 131%, with the nitrogen content and the viscosity of the CN samples increasing from 11.35 to 11.83% and from 94 to 119 mPa·s, respectively. The SEM analysis demonstrated that CNs retained the fiber shape. The IR spectroscopy confirmed that the synthesized material was specifically CNs, as evidenced by the characteristic frequencies of 1657-1659, 1277, 832-833, 747, and 688-690 cm-1. Nutrient media derived from the hydrolyzates obtained in 8 h and 24 h were of good quality for the synthesis of BC, with yields of 11.1% and 9.6%, respectively. The BC samples had a reticulate structure made of interlaced microfibrils with 65 and 81 nm widths and DPs of 2100 and 2300, respectively. It is for the first time that such an approach for the simultaneous production of CNs and BC has been employed.

5.
Plants (Basel) ; 11(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297815

RESUMO

Lignocellulosic biomass is of great interest as an alternative energy resource because it offers a range of merits. Miscanthus × giganteus is a lignocellulosic feedstock of special interest, as it combines a high biomass productivity with a low environmental impact, including CO2 emission control. The chemical composition of lignocellulose determines the application potential for efficient industrial processing. Here, we compiled a sample collection of Miscanthus × giganteus that had been cultivated in different climate regions between 2019 and 2021. The chemical composition was quantified by the conventional wet methods. The findings were compared with each other and with the known data. Starting as soon as the first vegetation year, Miscanthus was shown to feature the following chemical composition: 43.2-55.5% cellulose content, 17.1-25.1% acid-insoluble lignin content, 17.9-22.9% pentosan content, 0.90-2.95% ash content, and 0.3-1.2% extractives. The habitat and the surrounding environment were discovered herein to affect the chemical composition of Miscanthus. The stem part of Miscanthus was found to be richer in cellulose than the leaf (48.4-54.9% vs. 47.2-48.9%, respectively), regardless of the planation age and habitat. The obtained findings broaden the investigative geography of the chemical composition of Miscanthus and corroborate the high value of Miscanthus for industrial conversion thereof into cellulosic products worldwide.

6.
Polymers (Basel) ; 14(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36146044

RESUMO

The present paper is a fundamental study on the physicochemical properties and hydrolysis behavior of cellulose samples differing in origin: bacterial, synthetic, and vegetal. Bacterial cellulose was produced by Medusomyces gisevii Sa-12 in an enzymatic hydrolyzate derived from oat-hull pulp. Synthetic cellulose was obtained from an aqueous glucose solution by electropolymerization. Plant-based cellulose was isolated by treatment of Miscanthus sacchariflorus with dilute NaOH and HNO3 solutions. We explored different properties of cellulose samples, such as chemical composition, degree of polymerization (DP), degree of crystallinity (DC), porosity, and reported infrared spectroscopy and scanning electron microscopy results. The hydrolysis behavior was most notable dependent on the origin of cellulose. For the bacterial cellulose sample (2010 DP, 90% DC, 89.4% RS yield), the major property affecting the hydrolysis behavior was its unique nanoscale reticulate structure promoting fast penetration of cellulases into the substrate structure. The study on enzymatic hydrolysis showed that the hydrolysis behavior of synthetic and Miscanthus celluloses was most influenced by the substrate properties such as DP, DC and morphological structure. The yield of reducing sugars (RS) by hydrolysis of synthetic cellulose exhibiting a 3140 DP, 80% DC, and highly depolymerization-resistant fibers was 27%. In contrast, the hydrolysis of Miscanthus-derived cellulose with a 1030 DP, 68% DC, and enzyme-accessible fibers provided the highest RS yield of 90%. The other properties examined herein (absence/presence of non-cellulosic impurities, specific surface, pore volume) had no considerable effect on the bioconversion of the cellulosic substrates.

7.
Polymers (Basel) ; 13(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883747

RESUMO

One of the ways to enhance the yield of bacterial cellulose (BC) is by using dynamic aeration and different-type bioreactors because the microbial producers are strict aerobes. But in this case, the BC quality tends to worsen. Here we have combined static culture with aeration in the biosynthesis of BC by symbiotic Medusomyces gisevii Sa-12 for the first time. A new aeration method by feeding the air onto the growth medium surface is proposed herein. The culture was performed in a Binder-400 climate chamber. The study found that the air feed at a rate of 6.3 L/min allows a 25% increase in the BC yield. Moreover, this aeration mode resulted in BC samples of stable quality. The thermogravimetric and X-ray structural characteristics were retained: the crystallinity index in reflection and transmission geometries were 89% and 92%, respectively, and the allomorph Iα content was 94%. Slight decreases in the degree of polymerization (by 12.0% compared to the control-no aeration) and elastic modulus (by 12.6%) are not critical. Thus, the simple aeration by feeding the air onto the culture medium surface has turned out to be an excellent alternative to dynamic aeration. Usually, when the cultivation conditions, including the aeration ones, are changed, characteristics of the resultant BC are altered either, due to the sensitivity of individual microbial strains. In our case, the stable parameters of BC samples under variable aeration conditions are explained by the concomitant factors: the new efficient aeration method and the highly adaptive microbial producer-symbiotic Medusomyces gisevii Sa-12.

8.
Front Cell Infect Microbiol ; 11: 775554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938670

RESUMO

Innate lymphoid cells (ILCs) are a heterogeneous group of cytokine-producing lymphocytes which are predominantly located at mucosal barrier surfaces, such as skin, lungs, and gastrointestinal tract. ILCs contribute to tissue homeostasis, regulate microbiota-derived signals, and protect against mucosal pathogens. ILCs are classified into five major groups by their developmental origin and distinct cytokine production. A recently emerged intriguing feature of ILCs is their ability to alter their phenotype and function in response to changing local environmental cues such as pathogen invasion. Once the pathogen crosses host barriers, ILCs quickly activate cytokine production to limit the spread of the pathogen. However, the dysregulated ILC responses can lead to tissue inflammation and damage. Furthermore, the interplay between ILCs and other immune cell types shapes the outcome of the immune response. Recent studies highlighted the important role of ILCs for host defense against intracellular pathogens. Here, we review recent advances in understanding the mechanisms controlling protective and pathogenic ILC responses to intracellular pathogens. This knowledge can help develop new ILC-targeted strategies to control infectious diseases and immunopathology.


Assuntos
Imunidade Inata , Linfócitos , Citocinas , Homeostase , Humanos , Inflamação
10.
Front Immunol ; 12: 712632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335629

RESUMO

Lymphotoxin beta receptor (LTßR) is a promising therapeutic target in autoimmune and infectious diseases as well as cancer. Mice with genetic inactivation of LTßR display multiple defects in development and organization of lymphoid organs, mucosal immune responses, IgA production and an autoimmune phenotype. As these defects are imprinted in embryogenesis and neonate stages, the impact of LTßR signaling in adulthood remains unclear. Here, to overcome developmental defects, we generated mice with inducible ubiquitous genetic inactivation of LTßR in adult mice (iLTßRΔ/Δ mice) and redefined the role of LTßR signaling in organization of lymphoid organs, immune response to mucosal bacterial pathogen, IgA production and autoimmunity. In spleen, postnatal LTßR signaling is required for development of B cell follicles, follicular dendritic cells (FDCs), recruitment of neutrophils and maintenance of the marginal zone. Lymph nodes of iLTßRΔ/Δ mice were reduced in size, lacked FDCs, and had disorganized subcapsular sinus macrophages. Peyer`s patches were smaller in size and numbers, and displayed reduced FDCs. The number of isolated lymphoid follicles in small intestine and colon were also reduced. In contrast to LTßR-/- mice, iLTßRΔ/Δ mice displayed normal thymus structure and did not develop signs of systemic inflammation and autoimmunity. Further, our results suggest that LTßR signaling in adulthood is required for homeostasis of neutrophils, NK, and iNKT cells, but is dispensable for the maintenance of polyclonal IgA production. However, iLTßRΔ/Δ mice exhibited an increased sensitivity to C. rodentium infection and failed to develop pathogen-specific IgA responses. Collectively, our study uncovers new insights of LTßR signaling in adulthood for the maintenance of lymphoid organs, neutrophils, NK and iNKT cells, and IgA production in response to mucosal bacterial pathogen.


Assuntos
Envelhecimento/imunologia , Tecido Linfoide/imunologia , Receptor beta de Linfotoxina/fisiologia , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/imunologia , Autoimunidade , Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Citrobacter rodentium/imunologia , Cruzamentos Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/imunologia , Imunoglobulina A/biossíntese , Imunoglobulina A/imunologia , Inflamação , Células Matadoras Naturais/imunologia , Tecido Linfoide/citologia , Receptor beta de Linfotoxina/biossíntese , Receptor beta de Linfotoxina/deficiência , Receptor beta de Linfotoxina/genética , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Transgênicos , Neutrófilos/imunologia , Deleção de Sequência , Organismos Livres de Patógenos Específicos , Esplenomegalia/imunologia
11.
Polymers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203298

RESUMO

Extended cultivation with multiple removal of BC pellicles is proposed herein as a new biosynthetic process for bacterial cellulose (BC). This method enhances the BC surface area by 5-11 times per unit volume of the growth medium, improving the economic efficiency of biosynthesis. The resultant BC gel-films were thin, transparent, and congruent. The degree of polymerization (DP) and elastic modulus (EM) depended on the number of BC pellicle removals, vessel shape, and volume. The quality of BC from removals II-III to VII was better than from removal I. The process scale-up of 1:40 by volume increased DP by 1.5 times and EM by 5 times. A fact was established that the symbiotic Medusomyces gisevii Sa-12 was adaptable to exhausted growth medium: the medium was able to biosynthesize BC for 60 days, while glucose ran low at 24 days. On extended cultivation, DP and EM were found to decline by 39-64% and 57-65%, respectively. The BC gel-films obtained upon removals I-VI were successfully trialed in experimental tension-free hernioplasty.

12.
Mucosal Immunol ; 14(3): 703-716, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33214656

RESUMO

Innate lymphoid cells (ILCs) are a heterogeneous family of immune regulators that protect against mucosal pathogens but can also promote intestinal pathology. Although the plasticity between ILCs populations has been described, the role of mucosal pathogens in inducing ILC conversion leading to intestinal pathology remains unclear. Here we demonstrate that IFNγ-producing ILCs are responsible for promoting intestinal pathology in a mouse model of enterocolitis caused by Campylobacter jejuni, a common human enteric pathogen. Phenotypic analysis revealed a distinct population of IFNγ-producing NK1.1-T-bet+ILCs that accumulated in the intestine of C. jejuni-infected mice. Adoptive transfer experiments demonstrated their capacity to promote intestinal pathology. Inactivation of T-bet in NKp46+ ILCs ameliorated disease. Transcriptome analysis and cell-fate mapping experiments revealed that IFNγ-producing NK1.1-ILCs correspond to ILC1 profile and develop from RORγt+ progenitors. Collectively, we identified a distinct population of NK1.1-ex-ILC3s that promotes intestinal pathology through IFNγ production in response to C. jejuni infection.


Assuntos
Infecções por Campylobacter/imunologia , Campylobacter jejuni/fisiologia , Colite/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade Inata , Interferon gama/metabolismo , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Th1/imunologia
13.
Front Immunol ; 11: 579615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488580

RESUMO

Human pathogen Campylobacter jejuni is a significant risk factor for the development of long-term intestinal dysfunction although the cellular and molecular mechanisms remain scantily defined. IL-23 is an emerging therapeutic target for the treatment of inflammatory intestinal diseases, however its role in C. jejuni-driven intestinal pathology is not fully understood. IL-10 deficient mice represent a robust model to study the pathogenesis of C. jejuni infection because C. jejuni infection of mice lacking IL-10 results in symptoms and pathology that resemble human campylobacteriosis. To determine the role of IL-23 in C. jejuni-driven intestinal inflammation, we studied the disease pathogenesis in IL-23-/- mice with inhibited IL-10Rα signaling. These mice exhibited reduced intestinal pathology independent from bacterial clearance. Further, levels of IFNγ, IL-17, IL-22, TNF, and IL-6 were reduced and associated with reduced accumulation of neutrophils, monocytes and macrophages in the colon. Flow cytometry analysis revealed reduced production of IL-17 and IFNγ by group 1 and 3 innate lymphoid cells. Thus, our data suggest that IL-23 contributes to intestinal inflammation in C. jejuni infected mice by promoting IL-17 and IFNγ production by innate lymphoid cells.


Assuntos
Infecções por Campylobacter/imunologia , Campylobacter jejuni/fisiologia , Colite/imunologia , Interleucina-23/metabolismo , Intestinos/patologia , Linfócitos/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade Inata , Interferon gama/metabolismo , Interleucina-10/genética , Interleucina-17/metabolismo , Interleucina-23/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
14.
Nanomaterials (Basel) ; 9(12)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783661

RESUMO

Bacterial nanocellulose (BNC) whose biosynthesis fully conforms to green chemistry principles arouses much interest of specialists in technical chemistry and materials science because of its specific properties, such as nanostructure, purity, thermal stability, reactivity, high crystallinity, etc. The functionalization of the BNC surface remains a priority research area of polymers. The present study was aimed at scaled production of an enlarged BNC sample and at synthesizing cellulose nitrate (CN) therefrom. Cyclic biosynthesis of BNC was run in a semisynthetic glucose medium of 10-72 L in volume by using the Medusomyces gisevii Sa-12 symbiont. The most representative BNC sample weighing 6800 g and having an α-cellulose content of 99% and a polymerization degree of 4000 was nitrated. The nitration of freeze-dried BNC was performed with sulfuric-nitric mixed acid. BNC was examined by scanning electron microscopy (SEM) and infrared spectroscopy (IR), and CN was explored to a fuller extent by SEM, IR, thermogravimetric analysis/differential scanning analysis (TGA/DTA) and 13C nuclear magnetic resonance (NMR) spectroscopy. The three-cycle biosynthesis of BNC with an increasing volume of the nutrient medium from 10 to 72 L was successfully scaled up in nonsterile conditions to afford 9432 g of BNC gel-films. CNs with a nitrogen content of 10.96% and a viscosity of 916 cP were synthesized. It was found by the SEM technique that the CN preserved the 3D reticulate structure of initial BNC fibers a marginal thickening of the nanofibers themselves. Different analytical techniques reliably proved the resultant nitration product to be CN. When dissolved in acetone, the CN was found to form a clear high-viscosity organogel whose further studies will broaden application fields of the modified BNC.

15.
Mol Pharm ; 13(11): 3712-3723, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27654150

RESUMO

Targeted delivery of anticancer drugs to brain tumors, especially glioblastoma multiforme, which is the most frequent and aggressive type, is one of the important objectives in nanomedicine. Vascular endothelial growth factor (VEGF) and its receptor type II (VEGFR2) are promising targets because they are overexpressed by not only core tumor cells but also by migrated glioma cells, which are responsible for resistance and rapid progression of brain tumors. The purpose of the present study was to develop the liposomal drug delivery system combining enhanced loading capacity of cisplatin and high binding affinity to glioma cells. This was achieved by using of highly soluble cisplatin analogue, cis-diamminedinitratoplatinum(II), and antibodies against the native form of VEGF or VEGFR2 conjugated to liposome surface. The developed drug delivery system revealed sustained drug release profile, high affinity to antigens, and increased uptake by glioma C6 and U-87 MG cells. Pharmacokinetic study on glioma C6-bearing rats revealed prolonged blood circulation time of the liposomal formulation. The above features enabled the present drug delivery system to overcome both poor pharmacokinetics typical for platinum formulations and low loading capacity typical for conventional liposomal cisplatin formulations.


Assuntos
Cisplatino/metabolismo , Glioma/metabolismo , Lipossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Cisplatino/química , Citometria de Fluxo , Células HEK293 , Humanos , Lipossomos/química , Microscopia Confocal , Ratos , Fator A de Crescimento do Endotélio Vascular/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia
16.
Curr Cancer Drug Targets ; 13(4): 423-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23167597

RESUMO

Progression of solid tumors depends on vascularization and angiogenesis in a malignant tissue. Among a whole range of proangiogenic factors, a vascular endothelial growth factor A (VEGF-A) plays a key role. Blockade of VEGF may lead to regression of vascular network and inhibition of a tumor growth. In the present time, bevacizumab has been introduced into wide clinical practice in therapy of breast cancer, colorectal cancer and recurrent high-grade gliomas (HGGs). Coadministration of antiangiogenic therapy with irinotecan may increase probability of the response to the treatment and prolong progression-free survival rate (PFS). Moreover, bevacizumab is well tolerated and significantly improves patient's quality of life. However, in the case of brain tumors, the efficiency of such an approach is controversial. The antiangiogenic therapy can slightly delay tumor growth and does not lead to complete recovery. In addition, it contributes to enhanced tumor cell invasion into the normal brain. The mechanisms of resistance include activation of alternative proangiogenic signaling pathways, of an invasive population of tumor cells, metabolic change toward glycolysis and recruitment of myeloid bone marrow-derived cells to tumors. Obviously, that anti-VEGF therapy as monotherapy was not effective against HGGs. To enhance the antitumor treatment efficacy, it is necessary to develop a multi-target strategy to inhibit critical processes in malignancy progression such as angiogenesis, invasion, autophagy, metastatic spread, recruitment of bone marrow-derived endothelial cells and tumor stem-like cells. In addition, anti-VEGF antibodies have shown a promising result as a tumor-targeting vector for delivery therapeutic and diagnostic drugs in brain tumors.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Progressão da Doença , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...