Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Eng Mater ; 1(12): 3237-3253, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38148950

RESUMO

The design of shielding materials against ionizing radiation while simultaneously displaying enhanced multifunctional characteristics remains challenging. Here, for the first time, we present moldable paraffin-based iron nano- and microcomposites attenuating γ- and X-radiation. The moldability was gained by the warmth-of-hands-driven plasticity, which allowed for obtaining a specific shape of the composites at room temperature. The manufactured composites contained iron particles of various sizes, ranging from 22 nm to 63 µm. The target materials were widely characterized using XRD, NMR, Raman, TGA, SEM, and EDX. In the case of microcomposites, the shielding properties were developed at two concentrations: 10 and 50 wt %. The statistically significant results indicate that the iron particle size has a negligible effect on the shielding properties of the nano- and microcomposites. On the other hand, the higher iron particle contents significantly affected the attenuating ability, which emerged even as superior to the elemental aluminum in the X-ray range: at a 70 kV anode voltage, the half value layer was 6.689, 1.882, and 0.462 cm for aluminum, paraffin + 10 wt % Fe 3.5-6.5 µm, and paraffin + 50 wt % Fe 3.5-6.5 µm microcomposites, respectively. Importantly, the elaborated methodology-in situ cross-verified in the hospital studies recording real-life sampling-opens the pathway to high-performance, eco-friendly, lightweight, and recyclable shields manufactured via fully reproducible and scalable protocols.

2.
ACS Sustain Chem Eng ; 10(20): 6596-6608, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35634268

RESUMO

Water-based processing of graphene-typically considered as physicochemically incompatible with water in the macroscale-emerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp2-carbon nanoallotropes. Indeed, nanomaterials hidden under the common "graphene" signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene-polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the "growth-from" polymerization of l-DOPA (l-3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10-20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s-1 and a low yield stress τ0 up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene-PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq-1 (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding.

3.
ACS Appl Mater Interfaces ; 13(31): 37893-37903, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319693

RESUMO

Wetting of metal surfaces plays an important role in fuel cells, corrosion science, and heat-transfer devices. It has been recently stipulated that Cu surface is hydrophobic. In order to address this issue we use high purity (1 1 1) Cu prepared without oxygen, and resistant to oxidation. Using the modern Fringe Projection Phase-Shifting method of surface roughness determination, together with a new cell allowing the vacuum and thermal desorption of samples, we define the relation between the copper surface roughness and water contact angle (WCA). Next by a simple extrapolation, we determine the WCA for the perfectly smooth copper surface (WCA = 34°). Additionally, the kinetics of airborne hydrocarbons adsorption on copper was measured. It is shown for the first time that the presence of surface hydrocarbons strongly affects not only WCA, but also water droplet evaporation and the temperature of water droplet freezing. The different behavior and features of the surfaces were observed once the atmosphere of the experiment was changed from argon to air. The evaporation results are well described by the theoretical framework proposed by Semenov, and the freezing process by the dynamic growth angle model.

4.
Materials (Basel) ; 13(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230922

RESUMO

Silicon is a widely applied material and the wetting of silicon surface is an important phenomenon. However, contradictions in the literature appear considering the value of the water contact angle (WCA). The purpose of this study is to present a holistic experimental and theoretical approach to the WCA determination. To do this, we checked the chemical composition of the silicon (1,0,0) surface by using the X-ray photoelectron spectroscopy (XPS) method, and next this surface was purified using different cleaning methods. As it was proved that airborne hydrocarbons change a solid wetting properties the WCA values were measured in hydrocarbons atmosphere. Next, molecular dynamics (MD) simulations were performed to determine the mechanism of wetting in this atmosphere and to propose the force field parameters for silica wetting simulation. It is concluded that the best method of surface cleaning is the solvent-reinforced de Gennes method, and the WCA value of silicon covered by SiO2 layer is equal to 20.7° (at room temperature). MD simulation results show that the mechanism of pure silicon wetting is similar to that reported for graphene, and the mechanism of silicon covered by SiO2 layer wetting is similar to this observed recently for a MOF.

5.
Materials (Basel) ; 13(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012828

RESUMO

It is well known that carbon nanotube (CNT) oxidation (usually with concentrated HNO3) is a major step before the electrophoretic deposition (EPD). However, the recent discovery of the "onion effect" proves that multiwalled carbon nanotubes are not only oxidized, but a simultaneous unsheathing process occurs. We present the first report concerning the influence of unsheathing on the properties of the thus-formed CNT surface layer. In our study we examine how the process of gradual oxidation/unsheathing of a series of multiwalled carbon nanotubes (MWCNTs) influences the morphology of the surface formed via EPD. Taking a series of well-characterized and gradually oxidized/unsheathing Nanocyl MWCNTs and performing EPD on a carbon fiber surface, we analyzed the morphology and wettability of the CNT surfaces. Our results show that the water contact angle could be gradually changed in a wide range (125-163°) and the major property determining its value was the diameter of aggregates formed before the deposition process in the solvent. Based on the obtained results we determined the parameters having a crucial influence on the morphology of created layers. Our results shed new light on the deposition mechanism and enable the preparation of surfaces with steerable roughness and wettability.

6.
Nanomaterials (Basel) ; 9(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731640

RESUMO

We demonstrate Ullmann-type reactions as novel and advantageous functionalization of carbon nanotubes (CNTs) toward tunable surface chemistry. The functionalization routes comprise O-, N-, and C-arylation of chlorinated CNTs. We confirm the versatility and efficiency of the reaction allowing functionalization degrees up to 3.5 mmol g-1 by applying both various nanotube substrates, i.e., single-wall (SWCNTs) and multi-wall CNTs (MWCNTs) of various chirality, geometry, and morphology as well as diverse Ullmann-type reagents: phenol, aniline, and iodobenzene. The reactivity of nanotubes was correlatable with the nanotube diameter and morphology revealing SWCNTs as the most reactive representatives. We have determined the optimized conditions of this two-step synthetic protocol as: (1) chlorination using iodine trichloride (ICl3), and (2) Ullmann-type reaction in the presence of: copper(I) iodide (CuI), 1,10-phenanthroline as chelating agent and caesium carbonate (Cs2CO3) as base. We have analyzed functionalized CNTs using a variety of techniques, i.e., scanning and transmission electron microscopy, energy dispersive spectroscopy, thermogravimetry, comprehensive Raman spectroscopy, and X-ray photoelectron spectroscopy. The analyses confirmed the purely covalent nature of those modifications at all stages. Eventually, we have proved the elaborated protocol as exceptionally tunable since it enabled us: (a) to synthesize superhydrophilic films from-the intrinsically hydrophobic-vertically aligned MWCNT arrays and (b) to produce printable highly electroconductive pastes of enhanced characteristics-as compared for non-modified and otherwise modified MWCNTs-for textronics.

7.
Langmuir ; 35(2): 420-427, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30562472

RESUMO

Wetting is very common phenomenon, and it is well documented that the wettability of a solid depends on the surface density of adsorbed airborne hydrocarbons. This "hydrocarbon hypothesis" has been experimentally confirmed for different surfaces, for example, graphene, TiO2, and SiO2; however, there are no scientific reports describing the influence of airborne contaminants on the water contact angle (WCA) value measured on the polytetrafluoroethylene (PTFE) surface. Using experimental data showing the influence of airborne hydrocarbons on the wettability of graphene, gold and PTFE by water, together with Molecular Dynamics simulation results we prove that the relation between the WCA and the surface concentration of hydrocarbons ( n-decane, n-tridecane, and n-tetracosane) is more complex than has been assumed up until now. We show, in contrast to commonly approved opinion, that adsorbed hydrocarbons can increase (graphene, Au) or decrease (PTFE) the WCA of a nanodroplet sitting on a surface. Using classical thermodynamics, a simple theoretical approach is developed. It is based on two adsorbed hydrocarbon states, namely, "carpet" and "dimple". In the "carpet" state a uniform layer of alkane molecules covers the entire substrate. In contrast, in the "dimple" state, the preadsorbed layer of alkane molecules covers only the open surface. Simple thermodynamic balance between the two states explains observed experimental and simulation results, forming a good starting point for future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...