Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 22(4): 1301-12, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26617262

RESUMO

An electron-deficient copper(III) corrole was utilized for the construction of donor-acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump-probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge-separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron-deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 10(10)  s(-1) and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.

2.
Chemistry ; 21(2): 808-13, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25370199

RESUMO

The simultaneous measurement of the decrease of available Fe(II) ions and the increase of available Fe(III) ions allowed the analysis of the ferroxidase activity of two distinct apoferritins. Although recombinant human apoferritin (HuFtH) rapidly oxidizes Fe(II) to Fe(III) , this iron is not properly stored in the ferritin cavity, as otherwise occurs in horse-spleen H/L-apoferritin (HsFt; H=heavy subunit, L=light subunit). Iron storage in these apoferritins was also studied in the presence of two copper-loaded mammalian metallothioneins (MT2 and MT3), a scenario that occurs in different brain-cell types. For HuFtH, unstored Fe(III) ions trigger the oxidation of Cu-MT2 with concomitant Cu(I) release. In contrast, there is no reaction with Cu-MT2 in the case of HsFt. Similarly, Cu-MT3 does not react during either HuFtH or HsFt iron reconstitution. Significantly, the combination of ferritin and metallothionein isoforms reported in glia and neuronal cells are precisely those combinations that avoid a harmful release of Fe(II) and Cu(I) ions.


Assuntos
Apoferritinas/metabolismo , Ferritinas/metabolismo , Metalotioneína/metabolismo , Animais , Compostos Férricos/análise , Compostos Férricos/metabolismo , Ferritinas/química , Compostos Ferrosos/análise , Compostos Ferrosos/metabolismo , Cavalos , Humanos , Metalotioneína/análise , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...