Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797520

RESUMO

Whole-genome bisulfite sequencing (BS-Seq) measures cytosine methylation changes at single-base resolution and can be used to profile cell-free DNA (cfDNA). In plasma, ultrashort single-stranded cfDNA (uscfDNA, ∼50 nt) has been identified together with 167 bp double-stranded mononucleosomal cell-free DNA (mncfDNA). However, the methylation profile of uscfDNA has not been described. Conventional BS-Seq workflows may not be helpful because bisulfite conversion degrades larger DNA into smaller fragments, leading to erroneous categorization as uscfDNA. We describe the '5mCAdpBS-Seq' workflow in which pre-methylated 5mC (5-methylcytosine) single-stranded adapters are ligated to heat-denatured cfDNA before bisulfite conversion. This method retains only DNA fragments that are unaltered by bisulfite treatment, resulting in less biased uscfDNA methylation analysis. Using 5mCAdpBS-Seq, uscfDNA had lower levels of DNA methylation (∼15%) compared to mncfDNA and was enriched in promoters and CpG islands. Hypomethylated uscfDNA fragments were enriched in upstream transcription start sites (TSSs), and the intensity of enrichment was correlated with expressed genes of hemopoietic cells. Using tissue-of-origin deconvolution, we inferred that uscfDNA is derived primarily from eosinophils, neutrophils, and monocytes. As proof-of-principle, we show that characteristics of the methylation profile of uscfDNA can distinguish non-small cell lung carcinoma from non-cancer samples. The 5mCAdpBS-Seq workflow is recommended for any cfDNA methylation-based investigations.

3.
Biomark Res ; 11(1): 90, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817261

RESUMO

BACKGROUND: Recent advances in circulating cell-free DNA (cfDNA) analysis from biofluids have opened new avenues for liquid biopsy (LB). However, current cfDNA LB assays are limited by the availability of existing information on established genotypes associated with tumor tissues. Certain cancers present with a limited list of established mutated cfDNA biomarkers, and thus, nonmutated cfDNA characteristics along with alternative biofluids are needed to broaden the available cfDNA targets for cancer detection. Saliva is an intriguing and accessible biofluid that has yet to be fully explored for its clinical utility for cancer detection. METHODS: In this report, we employed a low-coverage single stranded (ss) library NGS pipeline "Broad-Range cell-free DNA-Seq" (BRcfDNA-Seq) using saliva to comprehensively investigate the characteristics of salivary cfDNA (ScfDNA). The identification of cfDNA features has been made possible by applying novel cfDNA processing techniques that permit the incorporation of ultrashort, ss, and jagged DNA fragments. As a proof of concept using 10 gastric cancer (GC) and 10 noncancer samples, we examined whether ScfDNA characteristics, including fragmentomics, end motif profiles, microbial contribution, and human chromosomal mapping, could differentiate between these two groups. RESULTS: Individual and integrative analysis of these ScfDNA features demonstrated significant differences between the two cohorts, suggesting that disease state may affect the ScfDNA population by altering nuclear cleavage or the profile of contributory organism cfDNA to total ScfDNA. We report that principal component analysis integration of several aspects of salivary cell-free DNA fragmentomic profiles, genomic element profiles, end-motif sequence patterns, and distinct oral microbiome populations can differentiate the two populations with a p value of < 0.0001 (PC1). CONCLUSION: These novel features of ScfDNA characteristics could be clinically useful for improving saliva-based LB detection and the eventual monitoring of local or systemic diseases.

4.
Clin Chem ; 69(11): 1270-1282, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725931

RESUMO

BACKGROUND: Using broad range cell-free DNA sequencing (BRcfDNA-Seq), a nontargeted next-generation sequencing (NGS) methodology, we previously identified a novel class of approximately 50 nt ultrashort single-stranded cell-free DNA (uscfDNA) in plasma that is distinctly different from 167 bp mononucleosomal cell-free DNA (mncfDNA). We hypothesize that uscfDNA possesses characteristics that are useful for disease detection. METHODS: Using BRcfDNA-Seq, we examined both cfDNA populations in the plasma of 18 noncancer controls and 14 patients with late-stage nonsmall cell lung carcinoma (NSCLC). In comparison to mncfDNA, we assessed whether functional element (FE) peaks, fragmentomics, end-motifs, and G-Quadruplex (G-Quad) signatures could be useful features of uscfDNA for NSCLC determination. RESULTS: In noncancer participants, compared to mncfDNA, uscfDNA fragments showed a 45.2-fold increased tendency to form FE peaks (enriched in promoter, intronic, and exonic regions), demonstrated a distinct end-motif-frequency profile, and presented with a 4.9-fold increase in G-Quad signatures. Within NSCLC participants, only the uscfDNA population had discoverable FE peak candidates. Additionally, uscfDNA showcased different end-motif-frequency candidates distinct from mncfDNA. Although both cfDNA populations showed increased fragmentation in NSCLC, the G-Quad signatures were more discriminatory in uscfDNA. Compilation of cfDNA features using principal component analysis revealed that the first 5 principal components of both cfDNA subtypes had a cumulative explained variance of >80%. CONCLUSIONS: These observations indicate that the distinct biological processes of uscfDNA and that FE peaks, fragmentomics, end-motifs, and G-Quad signatures are uscfDNA features with promising biomarker potential. These findings further justify its exploration as a distinct class of biomarker to augment pre-existing liquid biopsy approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Pulmão/patologia , DNA de Cadeia Simples
5.
Res Sq ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37503289

RESUMO

Background: Recent advances in circulating cell-free DNA (cfDNA) analysis from biofluids have opened new avenues for liquid biopsy (LB). However, current cfDNA LB assays are limited by the availability of existing information on established genotypes associated with tumor tissues. Certain cancers present with a limited list of established mutated cfDNA biomarkers, and thus, nonmutated cfDNA characteristics along with alternative biofluids are needed to broaden the available cfDNA targets for cancer detection. Saliva is an intriguing and accessible biofluid that has yet to be fully explored for its clinical utility for cancer detection. Methods: In this report, we employed a low-coverage single stranded (ss) library NGS pipeline "Broad-Range cell-free DNA-Seq" (BRcfDNA-Seq) using saliva to comprehensively investigate the characteristics of salivary cfDNA (ScfDNA). The identification of cfDNA features has been made possible by applying novel cfDNA processing techniques that permit the incorporation of ultrashort, ss, and jagged DNA fragments. As a proof of concept using 10 gastric cancer (GC) and 10 noncancer samples, we examined whether ScfDNA characteristics, including fragmentomics, end motif profiles, microbial contribution, and human chromosomal mapping, could differentiate between these two groups. Results: Individual and integrative analysis of these ScfDNA features demonstrated significant differences between the two cohorts, suggesting that disease state may affect the ScfDNA population by altering nuclear cleavage or the profile of contributory organism cfDNA to total ScfDNA. We report that principal component analysis integration of several aspects of salivary cell-free DNA fragmentomic profiles, genomic element profiles, end-motif sequence patterns, and distinct oral microbiome populations can differentiate the two populations with a p value of < 0.0001 (PC1). Conclusion: These novel features of ScfDNA characteristics could be clinically useful for improving saliva-based LB detection and the eventual monitoring of local or systemic diseases.

6.
PLoS One ; 15(9): e0239474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32960917

RESUMO

Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. We included all emergency room or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary laboratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven machine learning models and used a combination of those models for the final diagnostic classification. In the test set (n = 392), our combined model had an area under the receiver operator curve of 0.91 (95% confidence interval 0.87-0.96). The model achieved a sensitivity of 0.93 (95% CI 0.85-0.98), specificity of 0.64 (95% CI 0.58-0.69). We found that our machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2 PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to be used as a screening tool in hospital settings where PCR testing is scarce or unavailable.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pacientes Internados , Aprendizado de Máquina , Pneumonia Viral/diagnóstico , Adulto , Idoso , Área Sob a Curva , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/normas , Humanos , Los Angeles , Programas de Rastreamento/métodos , Programas de Rastreamento/normas , Pessoa de Meia-Idade , Pandemias , Reação em Cadeia da Polimerase , Estudos Retrospectivos , SARS-CoV-2
7.
IEEE/ACM Trans Comput Biol Bioinform ; 16(4): 1077-1090, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28622673

RESUMO

Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4,700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Duplicação Gênica , Transferência Genética Horizontal , Algoritmos , Evolução Molecular , Genes Bacterianos , Genômica/métodos , Modelos Genéticos , Família Multigênica , Filogenia , Software , Incerteza
8.
Bioinformatics ; 34(18): 3214-3216, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29688310

RESUMO

Summary: RANGER-DTL 2.0 is a software program for inferring gene family evolution using Duplication-Transfer-Loss reconciliation. This new software is highly scalable and easy to use, and offers many new features not currently available in any other reconciliation program. RANGER-DTL 2.0 has a particular focus on reconciliation accuracy and can account for many sources of reconciliation uncertainty including uncertain gene tree rooting, gene tree topological uncertainty, multiple optimal reconciliations and alternative event cost assignments. RANGER-DTL 2.0 is open-source and written in C++ and Python. Availability and implementation: Pre-compiled executables, source code (open-source under GNU GPL) and a detailed manual are freely available from http://compbio.engr.uconn.edu/software/RANGER-DTL/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Duplicação Gênica , Software , Algoritmos
9.
Artigo em Inglês | MEDLINE | ID: mdl-28055898

RESUMO

Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.


Assuntos
Mapeamento Cromossômico/métodos , Evolução Molecular , Deleção de Genes , Duplicação Gênica/genética , Transferência Genética Horizontal/genética , Família Multigênica/genética , Linhagem , Algoritmos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...